【題目】如圖,O為所在圓的圓心,∠AOB=90°,點P在
上運動(不與點A,B重合),AP交OB延長線于點C,CD⊥OP于點D.若OB=2BC=2,則PD的長是( )
A.B.
C.
D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).
人類會作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國的墨子給出圓的概念:“一中同長也.”.意思說,圓有一個圓心,圓心到圓周的長都相等.這個定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.
我們把頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.
弦切角定理:弦切角的度數(shù)等于它所夾弧所對的圓周角度數(shù).
下面是弦切角定理的部分證明過程:
證明:如圖①,AB與⊙O相切于點A.當圓心O在弦AC上時,容易得到∠CAB=90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對的圓周角度數(shù).
如圖②,AB與⊙O相切于點A,當圓心O在∠BAC的內(nèi)部時,過點A作直徑AD交⊙O于點D,在上任取一點E,連接EC,ED,EA,則∠CED=∠CAD.
…
任務(wù):
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖③,AB與⊙O相切于點A.當圓心O在∠BAC的外部時,請寫出弦切角定理的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使點A與CD邊上的點H重合(H不與C,D重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G.設(shè)正方形ABCD周長為m,△CHG周長為n,則為( 。
A.B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是菱形,點A的坐標為(0,),分別以A,B為圓心,大于
AB的長為半徑作弧,兩弧交于點E,F,直線EF恰好經(jīng)過點D,則點D的坐標為( 。
A. (2,2)B. (2,)C. (
,2)D. (
+1,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校王老師組織九(1)班同學(xué)開展數(shù)學(xué)活動,某天帶領(lǐng)同學(xué)們測量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A的仰角為45°,斜坡與地面成60°角,CD=4m,請你根據(jù)這些數(shù)據(jù)求電線桿的高AB.(結(jié)果用根號表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F分別是OB,OD的中點.
(1)試說明四邊形AECF是平行四邊形.
(2)若AC=8,AB=6.若AC⊥AB,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為
的直徑,點
為
延長線上的一點,過點
作
的切線
,切點為
,過
兩點分別作
的垂線
,垂足分別為
,連接
.
求證:(1)平分
;
(2)若,求
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內(nèi)有一點C,滿足AC=BC,當點A運動時,點C始終在函數(shù)y=
的圖象上運動,tan∠CAB=2,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與
軸交于點
(
),與
軸交于點
,拋物線
(
)經(jīng)過
,
兩點,
為線段
上一點,過點
作
軸交拋物線于點
.
(1)當時,
①求拋物線的關(guān)系式;
②設(shè)點的橫坐標為
,用含
的代數(shù)式表示
的長,并求當
為何值時,
?
(2)若長的最大值為16,試討論關(guān)于
的一元二次方程
的解的個數(shù)與
的取值范圍的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com