日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,∠BAC90°,ABAC

          I)如圖,DBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC

          求證:(1)△BAD≌△CAE;

          2BCDC+EC

          (Ⅱ)如圖,D為△ABC外一點(diǎn),且∠ADC45°,仍將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,ED

          1)△BAD≌△CAE的結(jié)論是否仍然成立?并請(qǐng)你說(shuō)明理由;

          2)若BD9,CD3,求AD的長(zhǎng).

          【答案】I)(1)見(jiàn)解析;(2)見(jiàn)解析;(Ⅱ)(1)仍然成立;理由見(jiàn)解析(2)若AD6

          【解析】

          (Ⅰ)(1)根據(jù)全等三角形的判定定理即可得到結(jié)論;

          2)根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

          (Ⅱ)(1)根據(jù)全等三角形的判定定理即可得到△BAD≌△CAE;

          2)根據(jù)全等三角形的性質(zhì)得到BDCE9,根據(jù)勾股定理計(jì)算即可.

          解:(Ⅰ)(1)∵∠BAC=∠DAE90°,

          ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,

          在△BAD和△CAE中,,

          ∴△BAD≌△CAESAS);

          (2)∵△BAD≌△CAE

          BDCE

          BCBD+CDEC+CD;

          (Ⅱ)(1)△BAD≌△CAE的結(jié)論仍然成立,

          理由:∵將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE

          ∴△ADE是等腰直角三角形,

          AEAD,

          ∵∠BAC+CAD=∠DAE+CAD,

          即∠BAD=∠CAE,

          在△BAD與△CAE中,,

          ∴△BAD≌△CAESAS);

          2)∵△BAD≌△CAE,

          BDCE9,

          ∵∠ADC45°,∠EDA45°,

          ∴∠EDC90°,

          DE6

          ∵∠DAE90°,

          ADAEDE6

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3)B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

          (1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

          (2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

          (3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一次函數(shù)y=ax+圖象與x軸,y軸分別相交于A、B兩點(diǎn),與反比例函數(shù)y=(k≠0)的圖象相交于點(diǎn)E、F,過(guò)F作y軸的垂線,垂足為點(diǎn)C,已知點(diǎn)A(﹣3,0),點(diǎn)F(3,t).

          (1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

          (2)求點(diǎn)E的坐標(biāo)并求△EOF的面積;

          (3)結(jié)合該圖象寫(xiě)出滿足不等式﹣ax≤的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C1落在邊AC上時(shí),設(shè)AC的對(duì)應(yīng)邊A1C1與AB的交點(diǎn)為E,則∠BEC1___°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2<a<﹣其中正確結(jié)論有( 。

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在一個(gè)不透明的袋中裝有5個(gè)只有顏色不同的球,其中3個(gè)黃球,2個(gè)黑球.

          (1)求從袋中同時(shí)摸出的兩個(gè)球都是黃球的概率;

          (2)現(xiàn)將黑球和白球若干個(gè)(黑球個(gè)數(shù)是白球個(gè)數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個(gè)球是黑球的概率是,求放入袋中的黑球的個(gè)數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,已知是等腰底邊上的高,且上有一點(diǎn),滿足,則的值是(

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形的頂點(diǎn)、分別在平面直角坐標(biāo)系的軸和軸上,且,頂點(diǎn)在第一象限,經(jīng)過(guò)矩形對(duì)角線交點(diǎn)的反比例函數(shù)的圖像分別與交于點(diǎn)、,若的面積是2,則的值為________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)Px,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱為P點(diǎn)的坐標(biāo)差,而圖形G上所有點(diǎn)的坐標(biāo)差中的最大值稱為圖形G特征值

          1)①點(diǎn)A1,3)的坐標(biāo)差   ;

          ②拋物線y=﹣x2+3x+4特征值   

          2)某二次函數(shù)y=﹣x2+bx+cc≠0)的特征值為﹣1,點(diǎn)Bm,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C坐標(biāo)差相等.

          ①直接寫(xiě)出m   ;(用含c的式子表示)

          ②求此二次函數(shù)的表達(dá)式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案