日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖,RtABC,C=90,AC=6,BC=8,動點P從點A開始,沿邊AC向點C以每秒1個單位長度的速度運動,動點D從點A開始,沿邊AB向點B以每秒個單位長度的速度運動,且恰好能始終保持連結兩動點的直線PDAC,動點Q從點C開始,沿邊CB向點B以每秒2個單位長度的速度運動,連結PQ.P,D,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另兩個點也隨之停止運動,設運動時間為t(t0).

          (1)t為何值時,四邊形BQPD的面積為△ABC面積的?

          (2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;

          (3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由,并探究如何改變點Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度。

          【答案】(1);(2)存在,;(3)不存在;當點Q的速度為每秒個單位長度時,經過秒,四邊形PDBQ是菱形.

          【解析】

          (1)首先表示出四邊形面積以及求出三角形面積,列方程求解即可;

          (2)BQ//DP,可得當BQ=DP時,四邊形PDBQ是平行四邊形,由此可得關于t的方程,解方程即可得;

          (3)利用(2)中所求,即可求得此時DPBD的長,由DPBD,可判定平行四邊形PDBQ不能為菱形,然后設點Q的速度為每秒v個單位長度,由要使四邊形PDBQ為菱形,則PD=BD=BQ,列方程求解即可.

          (1)∵直線PDAC

          ∴∠APD=90°,

          又∵∠C=90°

          ∴∠C=APD,

          PD//BC,

          RtAPD中,AD=,AP=t,

          PD=,PC=AC-AP=6-t,

          CQ=2t,BC=8,

          BQ=8-2t,

          ∴四邊形BQPD的面積為:(BQ+DP)×PC=(8-2t+t)(6-t),

          ABC的面積為:ACBC=×6×8=24,

          ∴四邊形BQPD的面積為ABC面積的時,×24=(8-2t+t)(6-t),

          解得:

          ∵當其中一點到達端點時,另兩個點也隨之停止運動,

          t4,

          不合題意,舍去,

          ∴當t時,四邊形BQPD的面積為△ABC面積的;

          (2)存在,

          PD//BC,

          BQ//DP

          ∴當BQ=DP時,四邊形PDBQ是行四邊形,

          8-2t=,解得:t=,

          ∴存在,t=時,四邊形PDBQ為平行四邊形;

          (3)不存在,理由如下:

          時,

          DPBD,

          ∴平行四邊形PDBQ不能為菱形;

          設點Q的速度為每秒v個單位長度,

          BQ=8-vtPD=,BD=10-

          要使四邊形PDBQ成為菱形,則PD=BD=BQ

          PD=BD時,即,解得:t=,

          PD=BQ,t=時,即,解得:v=,

          所以當點Q的速度為每秒個單位長度時,經過秒,四邊形PDBQ是菱形.

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】已知A(n,-2),B(1,4)是一次函數y=kx+b的圖象和反比例函數y=的圖象的兩個交點,直線ABy軸交于點C.

          (1)求反比例函數和一次函數的關系式;

          (2)AOC的面積;

          (3)求不等式kx+b-<0的解集(直接寫出答案).

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某商場在春節(jié)期間搞優(yōu)惠促銷活動,商場將29英寸和25英寸彩電共96臺分別以8折和7折出售,共得168400元。已知29英寸彩電原價為3000/臺,25英寸彩電原價為2000/臺,出售29英寸和25英寸彩電各多少臺?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】RtABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點,PEABE,PFACF,MEF中點,則AM的最小值為______

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,以圓O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是弧上一點(不與A,B重合),連接OP,設∠POB=α,則點P的坐標是

          A. sinα,sinα B. cosαcosα C. cosα,sinα D. sinα,cosα

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】1)操作發(fā)現:

          如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內部,延長AF交CD于點G.猜想線段GF與GC有何數量關系?并證明你的結論.

          (2)類比探究:

          如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結論是否仍然成立?請說明理由.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖1,已知平行四邊形ABCD頂點A的坐標為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.

          (1)求拋物線的表達式;

          (2)設四邊形ABEF的面積為S,請求出S與m的函數關系式,并寫出自變量m的取值范圍;

          (3)如圖2,過點F作FMx軸,垂足為M,交直線AC于P,過點P作PNy軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂線平分線交AB于點F,交BC的延長線于點E,連接AE,DF.

          求證:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某工藝廠設計了一款成本為10元/件的工藝品投放市場進行試銷.

          經過調查,得到如下數據:

          銷售單價x(元/件)

          20

          30

          40

          50

          60

          每天銷售量y(件)

          500

          400

          300

          200

          100

          (1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數關系式,并求出函數關系式.

          (2)物價部門規(guī)定,該工藝品的銷售單價最高不超過45元/件,當銷售單價x定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?(利潤=銷售總價﹣成本總價)

          (3)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)

          查看答案和解析>>

          同步練習冊答案