日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知:在⊙O中,BC=4數(shù)學(xué)公式,CD是⊙O的直徑,CD⊥AB于點(diǎn)E,∠C=30°.
          (1)求圖中扇形OAB的面積;
          (2)若用扇形OAB圍成一個(gè)圓錐側(cè)面,求這個(gè)圓錐的底面圓的半徑.

          解:(1)在⊙O中,∵∠C=30°,
          ∴∠BOD=2∠C=60°,
          ∵直徑CD⊥弦AB,
          =
          ∴∠AOB=2∠BOD=2×60°=120°,(2分)
          過點(diǎn)O作OF⊥BC于F.
          ∵BC=4,
          ∴BF=BC=×4=2
          設(shè)FO的長為x,則OB=2x,
          在Rt△BOF中,由勾股定理得:
          4x2-x2=(22,
          解得x=2,
          ∴OB=2x=4,(4分)
          ∴S扇形OAB=(120π×42)÷360=
          或S扇形OAB=(240π×42)÷360=;(5分)

          (2)設(shè)圓錐的底面半徑為r,
          則4πr=或4πr=,
          r=或r=,(9分)
          答:(1)圖中扇形OAB的面積為
          (2)所求圓錐的底面半徑為r=或r=.(10分)
          分析:(1)過點(diǎn)O作OF⊥BC于F,求得BC的長后再求得BF的長,由勾股定理求得OB的長后即可求面積;
          (2)利用扇形的面積公式計(jì)算其底面半徑即可.
          點(diǎn)評:本題考查了圓錐的計(jì)算,解題的關(guān)鍵是正確的理解圓錐的側(cè)面展開扇形及弧長之間的關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          數(shù)學(xué)老師將本班學(xué)生的身高數(shù)據(jù)(精確到l厘米)交給甲、乙兩同學(xué),要求他們各自獨(dú)立地繪制一幅頻數(shù)分布直方圖.甲繪制的如圖①所示,乙繪制的如圖②所示.已知身高在170厘米及以上有5位同學(xué),其中一幅圖描繪準(zhǔn)確.
          精英家教網(wǎng)
          請回答下列問題:
          (1)請根據(jù)信息指出哪幅圖有錯(cuò)?
          (2)該班學(xué)生有多少人?
          (3)甲同學(xué)身高為165厘米,他說:“我們班上比我高的人不超過
          14
          ”.他的說法正確嗎?說明理由;
          (4)設(shè)該班學(xué)生的身高數(shù)據(jù)的中位數(shù)為a,試寫出a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8.
          求:△ABC的面積.(結(jié)果可保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知:在⊙O中,BC=4
          3
          ,CD是⊙O的直徑,CD⊥AB于點(diǎn)E,∠C=30°.
          (1)求圖中扇形OAB的面積;
          (2)若用扇形OAB圍成一個(gè)圓錐側(cè)面,求這個(gè)圓錐的底面圓的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          1、如圖所示.已知:在正方形ABCD中,∠BAC的平分線交BC于E,作EF⊥AC于F,作FG⊥AB于G.求證:AB2=2FG2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,已知,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且 AM⊥MN于M,BN⊥MN于N.
          (1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①的位置時(shí),求證:MN=AM+BN;
          (2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②的位置時(shí),(1)中的結(jié)論還成立嗎?若成立,請給出證明;若不成立,寫出線段AM、BN與MN之間的數(shù)量關(guān)系?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案