日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知:如圖1,Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D、E在斜邊AB上,且∠DCE=45度.求證:線段DE、AD、EB總能構(gòu)成一個(gè)直角三角形;
          (2)已知:如圖2,等邊三角形ABC中,點(diǎn)D、E在邊AB上,且∠DCE=30°,請(qǐng)你找出一個(gè)條件精英家教網(wǎng),使線段DE、AD、EB能構(gòu)成一個(gè)等腰三角形,并求出此時(shí)等腰三角形頂角的度數(shù);
          (3)在(1)的條件下,如果AB=10,求BD•AE的值.
          分析:(1)可通過(guò)構(gòu)建全等三角形將所求的三條線段轉(zhuǎn)換到同一個(gè)三角形中,然后證明那個(gè)三角形是直角三角形即可.可以CE為一邊作∠ECF=∠ECB,在CF上截取CF=CB,連接DF、EF,那么我們可得出△CFE≌△CBE,于是EF=BE,然后我們?cè)僭O(shè)法求得AD=DF,就能將三條線段轉(zhuǎn)換到同一三角形中了.要證明AD=DF就要證明三角形DCF和DCA全等.這兩個(gè)三角形中已知的條件AC=BC=CF,又有一條公共邊只要證得兩組對(duì)應(yīng)邊的夾角相等即可.∠DCE=∠ECF+∠DCF=45°,那么∠DCA+∠ECB=45°,因此∠DCF=∠DCA這樣就構(gòu)成了三角形全等的條件,那么兩三角形全等,AD=DF,根據(jù)上面兩組全等三角形,我們可得出∠1+∠2=∠A+∠B=90°,因此三角形DEF是個(gè)直角三角形,那么也就得出AD、DE、BE總能構(gòu)成一個(gè)直角三角形了.
          (2)解題思路和輔助線作法與(1)完全相同,只不過(guò)得出AD=DF,EF=BE后,要使三角形DEF是個(gè)等腰三角形就要讓DE=EF,即AD=BE,那么這個(gè)條件就是AD=BE.
          (3)本題可通過(guò)相似三角形得出線段的比例來(lái)求得.∠AEB=45°+∠BCE=∠BCD,∠A=∠B=45°,我們可得出AE:BC=AC:BD,即BD•AE=AC•BC=AC2,直角三角形ACB中,我們知道AC2+BC2=AB2,即AC2=50,那么BD•AE=50.
          解答:精英家教網(wǎng)(1)證明:如圖1,∵∠ACB=90°,AC=BC,
          ∴∠A=∠B=45°.
          以CE為一邊作∠ECF=∠ECB,在CF上
          截取CF=CB,則CF=CB=AC.
          連接DF、EF,則△CFE≌△CBE.
          ∴FE=BE,∠1=∠B=45°.
          ∵∠DCE=∠ECF+∠DCF=45°,
          ∴∠DCA+∠ECB=45°.
          ∴∠DCF=∠DCA.
          又∵AC=CF,CD=CD
          ∴△DCF≌△DCA.
          ∴∠2=∠A=45°,DF=AD.
          ∴∠DFE=∠2+∠1=90°.
          ∴△DFE是直角三角形.
          又AD=DF,EB=EF,
          ∴線段DE、AD、EB總能構(gòu)成一個(gè)直角三角形.

          (2)解:當(dāng)AD=BE時(shí),線段DE、AD、EB能構(gòu)成一個(gè)等腰三角形.精英家教網(wǎng)
          如圖2,與(1)類(lèi)似,以CE為一邊,作∠ECF=∠ECB,在CF上截取CF=CB,
          可得△CFE≌△CBE,△DCF≌△DCA.
          ∴AD=DF,EF=BE.
          ∴∠DFE=∠1+∠2=∠A+∠B=120°.
          若使△DFE為等腰三角形,只需DF=EF,即AD=BE.
          ∴當(dāng)AD=BE時(shí),線段DE、AD、EB能構(gòu)成一個(gè)等腰三角形.
          且頂角∠DFE為120°.

          (3)解:如圖1,
          ∵∠ACE=∠ACD+∠DCE,∠CDB=∠ACD+∠A.
          又∠DCE=∠A=45°,
          ∴∠ACE=∠CDB.
          又∠A=∠B,
          ∴△ACE∽△BDC.
          AE
          BC
          =
          AC
          BD

          ∴BD•AE=AC•BC.
          ∵Rt△ACB中,由AC2+BC2=AB2=102,得AC2=BC2=50.
          ∴BD•AE=AC•BC=AC2=50.
          點(diǎn)評(píng):本題中利用全等或相似三角形來(lái)得出角相等,線段相等或成比例是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          2007年5月17日我市榮獲“國(guó)家衛(wèi)生城市稱(chēng)號(hào)”.在“創(chuàng)衛(wèi)”過(guò)程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點(diǎn)周?chē)?80m范圍內(nèi)為文物保護(hù)區(qū),在MN上點(diǎn)A處測(cè)得C在A的北偏東60°方向上,從A向東走500m到達(dá)B處精英家教網(wǎng),測(cè)得C在B的北偏西45°方向上.
          (1)NM是否穿過(guò)文物保護(hù)區(qū)?為什么?(參考數(shù)據(jù):
          3
          ≈1.732)
          (2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工作需要多少天?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個(gè)陰影部分面積的和為
          π

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知,如圖,∠1=∠2,
           
          .求證:AB=AC.
          (1)在橫線上添加一個(gè)使命題的結(jié)論成立的條件;
          (2)寫(xiě)出證明過(guò)程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為
          AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1,
          (Ⅰ)求BC、AP1的長(zhǎng);
          (Ⅱ)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫(xiě)出自變量m的取值范圍;
          (Ⅲ)以點(diǎn)E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,拋物線y=-
          3
          3
          x2-
          2
          3
          3
          x+
          3
          的圖象與x軸分別交于A,B兩點(diǎn),與y軸交精英家教網(wǎng)于C點(diǎn),⊙M經(jīng)過(guò)原點(diǎn)O及點(diǎn)A、C,點(diǎn)D是劣弧
          OA
          上一動(dòng)點(diǎn)(D點(diǎn)與A、O不重合).
          (1)求拋物線的頂點(diǎn)E的坐標(biāo);
          (2)求⊙M的面積;
          (3)連CD交AO于點(diǎn)F,延長(zhǎng)CD至G,使FG=2,試探究,當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),直線GA與⊙M相切,并請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案