日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知A,B,C,D,E,F(xiàn)分別是⊙O上的六等分點(diǎn),⊙O的半徑是100,在這六點(diǎn)間修建互通的道路(即圖中實(shí)線部分為道路),現(xiàn)有如下兩種方案.方案一:如圖1,各條線段長度均相等,記圖中道路長為l1;方案二:如圖2,AQ=BG=CH=DM=EN=FP,點(diǎn)G,H,M,N,P,Q分別是線段AQ,BG,CH,DM,EN,F(xiàn)P的中點(diǎn),六邊形GHMNPQ是以O(shè)為中心的正六邊形,記圖中道路長為l2;則l1= ;l2=

          【答案】;
          【解析】解:如圖1,連接OA,OB,過點(diǎn)M作MGOA于點(diǎn)G,

          ∵A,B,C,D,E,F(xiàn)分別是⊙O上的六等分點(diǎn),⊙O的半徑是100,
          AOB=60
          ∵各條線段長度均相等,
          AOM=30
          在RtOMG中,∵OG=OA=50,∴OM=
          ∴l(xiāng)1=9=.
          如圖2,連接OB,過點(diǎn)O作OR⊥BF于點(diǎn)R,

          ∵AQ=BG=CH=DM=EN=FP,點(diǎn)G,H,M,N,P,Q分別是線段AQ,BG,CH,DM,EN,F(xiàn)P的中點(diǎn),六邊形GHMNPQ是以O(shè)為中心的正六邊形,∴延長BG能與點(diǎn)F重合,點(diǎn)H和點(diǎn)G是BF的三等分點(diǎn).
          在Rt △ OBR中,∵OBR=30 ° ,OB=100,∴BR=,∴BF=
          ∴BG=BF=,
          ∴l(xiāng)2=6=.
          所以答案是:.
          【考點(diǎn)精析】利用正多邊形的性質(zhì)和正多邊形和圓對題目進(jìn)行判斷即可得到答案,需要熟知正多邊形都是軸對稱圖形.一個(gè)正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心;正多邊形的中心邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心;圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在Rt△ABC中,∠ACB=90°,現(xiàn)按如下步驟作圖:
          ①分別以A,C為圓心,a為半徑(a> AC)作弧,兩弧分別交于M,N兩點(diǎn);
          ②過M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;
          ③將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F.

          (1)請?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;
          (2)求證:四邊形BCFD是平行四邊形;
          (3)當(dāng)∠B為多少度時(shí),四邊形BCFD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,OD⊥弦BC于點(diǎn)F,交⊙O于點(diǎn)E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.

          (1)求證:直線CD為⊙O的切線;
          (2)若AB=5,BC=4,求線段CD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x的一元二次方程﹣x2+2ax+2﹣3a=0的一根x1≥1,另一根x2≤﹣1,則拋物線y=﹣x2+2ax+2﹣3a的頂點(diǎn)到x軸距離的最小值是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,對于P(a,b)和點(diǎn)Q(a,b′),給出如下定義:若b′= ,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(﹣2,5)的限變點(diǎn)的坐標(biāo)是(﹣2,﹣5).
          (1)點(diǎn)( ,1)的限變點(diǎn)的坐標(biāo)是;
          (2)判斷點(diǎn)A(﹣2,﹣1)、B(﹣1,2)中,哪一個(gè)點(diǎn)是函數(shù)y= 圖象上某一個(gè)點(diǎn)的限變點(diǎn)?并說明理由;
          (3)若點(diǎn)P(a,b)在函數(shù)y=﹣x+3的圖象上,其限變點(diǎn)Q(a,b′)的縱坐標(biāo)的取值范圍是﹣6≤b′≤﹣3,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD的邊AB=4,且BC>AB,一個(gè)量角器如圖所示放置,其中零刻度(即半圓O的直徑)與邊AB重合,點(diǎn)A處是0刻度,點(diǎn)B處是180刻度,點(diǎn)P是量角器的半圓弧上一動(dòng)點(diǎn),過點(diǎn)P作半圓的切線,設(shè)點(diǎn)P的刻度數(shù)為m,過點(diǎn)P的切線交線段BC與線段AD于點(diǎn)E,F(xiàn).

          (1)設(shè)∠PAB=n.
          ①如圖1,當(dāng)m=114°時(shí),n=;
          ②直接寫出n與m的關(guān)系式:;
          (2)試說明AF·BE是否是一個(gè)定值,若是,請求出它的值;若不是,請說明理由;
          (3)當(dāng)EF= 時(shí),求點(diǎn)P的刻度數(shù)m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩公司為“見義勇為基金會”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.
          請你根據(jù)以上信息,提出一個(gè)用分式方程解決的問題,并寫出解答過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)小組用高為1.2米的儀器測量一教學(xué)樓的高CD,如圖,距CD一定距離的A處,用儀器測得教學(xué)樓頂部D的仰角為β,再在A與C之間選一點(diǎn)B,由B處測出教學(xué)樓頂部D的仰角為α,測得A,B之間的距離為4米,若tanα=1.6,tanβ=1.2,則他們能求出教學(xué)樓的高嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖. 根據(jù)圖中提供的信息,解答下列問題:

          (1)補(bǔ)全頻數(shù)分布直方圖;
          (2)求扇形統(tǒng)計(jì)圖中m的值和“E”組對應(yīng)的圓心角度數(shù);
          (3)請估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案