日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCD的邊長為1,延長BA至E,使AE=1,連接EC、ED,則sin∠CED=( 。

          A. B. C. D.

          【答案】B

          【解析】

          連接AC,EFCACA的延長線于點(diǎn)F,求出DEAC,推出∠CED=∠ECA,求出EC、EF的長,根據(jù)銳角三角函數(shù)的定義求出即可

          連接AC,EFCA,CA的延長線于點(diǎn)F

          ∵四邊形ABCD是正方形,∴∠BAC=45°,∠DAE=∠DAB=90°.

          ADAE=1,∴∠AED=∠ADE=45°,即∠DEA=∠CAB=45°,∴ACED,∴∠CED=∠ECA

          AE=1,∴由勾股定理得EFAF

          ∵在Rt△EBC,由勾股定理得CE2=12+22=5,∴CE,∴sin∠CED=sin∠ECF

          故選B.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:直線軸、軸分別相交于點(diǎn)和點(diǎn),點(diǎn)在線段上.將沿折疊后,點(diǎn)恰好落在邊上點(diǎn)處.

          1)直接寫出點(diǎn)、點(diǎn)的坐標(biāo):

          2)求的長;

          3)點(diǎn)為平面內(nèi)一動(dòng)點(diǎn),且滿足以、、、為頂點(diǎn)的四邊形為平行四邊形,請直接回答:

          ①符合要求的點(diǎn)有幾個(gè)?

          ②寫出一個(gè)符合要求的點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,在△ABC中,AC的垂直平分線與∠ABC的角平分線交于點(diǎn)D,

          1)如圖1,判斷∠BAD和∠BCD之間的數(shù)量關(guān)系,并說明理由;

          2)如圖2,若∠DAC60°時(shí),探究線段AB,BCBD之間的數(shù)量關(guān)系,并說明理由;

          3)如圖3,在(2)的條件下,DACB的延長線交于點(diǎn)E,點(diǎn)FCD上一點(diǎn)且DFAE,連接AFBD于點(diǎn)G,若CE9,求DG的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工廠計(jì)劃生產(chǎn)甲、乙兩種產(chǎn)品共2500噸,每生產(chǎn)1噸甲產(chǎn)品可獲得利潤0.3萬元,每生產(chǎn)1噸乙產(chǎn)品可獲得利潤0.4萬元.設(shè)該工廠生產(chǎn)了甲產(chǎn)品x(噸),生產(chǎn)甲、乙兩種產(chǎn)品獲得的總利潤為y(萬元).

          1)求yx之間的函數(shù)表達(dá)式;

          2)若每生產(chǎn)1噸甲產(chǎn)品需要A原料0.25噸,每生產(chǎn)1噸乙產(chǎn)品需要A原料0.5噸.受市場影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產(chǎn)甲、乙兩種產(chǎn)品各為多少噸時(shí),能獲得最大利潤.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)計(jì)算:①+

          ②(×

          ③(2015π0 +|2|+÷+()1

          2)解方程:① =

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知代數(shù)式n≠2).

          1)①用含n的代數(shù)式表示m

          ②若m、n均取整數(shù),求m、n的值.

          2)當(dāng)nab時(shí),m對應(yīng)的值為cd 當(dāng)-2ba時(shí),試比較c、d的大。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過點(diǎn)A,D⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OFAD于點(diǎn)G.

          (1)求證:BC⊙O的切線;

          (2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;

          (3)BE=8,sinB=,求DG的長,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB,BC3,在BC邊上取兩點(diǎn)E、F(點(diǎn)E在點(diǎn)F的左邊),以EF為邊所作等邊△PEF,頂點(diǎn)P恰好在AD上,直線PEPF分別交直線AC于點(diǎn)G、H

          1)求△PEF的邊長;

          2)若△PEF的邊EF在線段CB上移動(dòng),試猜想:PHBE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;

          3)若△PEF的邊EF在射線CB上移動(dòng)(分別如圖和圖所示,CF1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知直線y=x+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D

          1)求拋物線的解析式;

          2)在第三象限內(nèi),F為拋物線上一點(diǎn),以A、EF為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);

          3)點(diǎn)P從點(diǎn)D出發(fā),沿對稱軸向下以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.

          查看答案和解析>>

          同步練習(xí)冊答案