日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC,點(diǎn)PBC邊上的任意一點(diǎn)(不與點(diǎn)B,C重合),∠APD= 60° ,PD交邊AB于點(diǎn)D. 設(shè)BP= x ,BD= y ,右圖為y關(guān)于x的函數(shù)大致圖象,下列判斷中正確的是(

          △ABC中邊長(zhǎng)為4;圖象的函數(shù)表達(dá)式是 , 其中 0x4;③ m=1

          A. ①②③B. ①②C. ②③D. ①③

          【答案】D

          【解析】

          設(shè)正△ABC邊長(zhǎng)為a,根據(jù)等邊三角形性質(zhì)可知∠B=∠C=60°,由三角形內(nèi)角和定理和平角性質(zhì)得∠CAP+∠APC=120°,∠BPD+∠APC=120°,等量代換可得∠CAP=∠BPD,根據(jù)相似三角形判定和性質(zhì)得CA:BP=CP:BD,代入數(shù)值可得y關(guān)于x的函數(shù)解析式為:;由二次函數(shù)性質(zhì)和圖像可得x==2,從而可得a值,即正△ABC邊長(zhǎng)為4,故①正確;將a值代入可得y關(guān)于x的函數(shù)解析式為,故②錯(cuò)誤;將二次函數(shù)解析式配方得,從而可得

          m=1,故③正確.

          解:∵△ABC為等邊三角形,

          ∴∠B=∠C=60°,

          ∵∠APD=60°,

          ∴∠CAP+∠APC=120°,∠BPD+∠APC=120°,

          ∴∠CAP=∠BPD,

          ∴△CAP∽△BPD,

          ∴CA:BP=CP:BD,

          設(shè)正△ABC邊長(zhǎng)為a,

          ∴CA=CB=a,CP=CB-BP=a-x,

          ∵ BP= x ,BD= y ,

          ∴a:x=(a-x):y,

          ,

          ∴ y關(guān)于x的函數(shù)解析式為:,

          ∵拋物線對(duì)稱軸為:x==2,

          ∴a=4,

          ∴正△ABC邊長(zhǎng)為4,

          故①正確;

          ∴y關(guān)于x的函數(shù)解析式為:,

          故②錯(cuò)誤;

          ,

          ∴m=1,

          故③正確;

          綜上所述:正確的有①③.

          故答案為:D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一次函數(shù)yax+b和反比例函數(shù)y在同一直角坐標(biāo)系中的大致圖象是( 。

          A. B.

          C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)DCM為直角三角形時(shí),折痕MN的長(zhǎng)為__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過(guò)點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).

          (1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

          (2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);

          (3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知BC是⊙O的直徑,點(diǎn)A,D在⊙O上,∠B=2CAD,在BC的延長(zhǎng)線上有一點(diǎn)P,使得∠PACB,弦AD交直徑BC于點(diǎn)E

          (1)求證:DP與⊙O相切;

          (2)判斷DCE的形狀,并證明你的結(jié)論;

          (3)若CE=2,DE,求線段BC的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)拋物線 y =m x2 -2m x+3 (m ≠0) 與 x 軸交于點(diǎn) A (a, 0) 和 B (b, 0) .

          (1)若 a =-1,求 m, b 的值;

          (2)若 2m +n =3 ,求證:拋物線的頂點(diǎn)在直線 y =m x+ n 上;

          (3)拋物線上有兩點(diǎn) P (x1, p) 和 Q (x2 , q) ,若 x1 <1 <x2 ,且 x1 +x2 >2 ,試比較 pq 的大小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABCD的邊AB=2,頂點(diǎn)A坐標(biāo)為(1,b),點(diǎn)D坐標(biāo)為(2,b+1)

          (1)點(diǎn)B的坐標(biāo)是   ,點(diǎn)C的坐標(biāo)是   (用b表示);

          (2)若雙曲線y=過(guò)ABCD的頂點(diǎn)BD,求該雙曲線的表達(dá)式;

          (3)ABCD與雙曲線y=(x>0)總有公共點(diǎn),求b的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)FFG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個(gè)數(shù)是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一座古塔AH的高為33米,AH⊥直線l,某校九年級(jí)數(shù)學(xué)興趣小組為了測(cè)得該古塔塔剎AB的高,在直線l上選取了點(diǎn)D,在D處測(cè)得點(diǎn)A的仰角為26.6°,測(cè)得點(diǎn)B的仰角為22.8°,求該古塔塔剎AB的高.(精確到0.1米)(參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案