日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 6、如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線段BC、AB上,∠EFB=60°,DC=EF.
          (1)求證:四邊形EFCD是平行四邊形;
          (2)若BF=EF,求證:AE=AD.
          分析:(1)由△ABC是等邊三角形得到∠B=60°,而∠EFB=60°,由此可以證明EF∥DC,而DC=EF,然后即可證明四邊形EFCD是平行四邊形;
          (2)如圖,連接BE,由BF=EF,∠EFB=60°可以推出△EFB是等邊三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又
          △ABC是等邊三角形,所以得到∠ACB=60°,AB=AC,然后即可證明△AEB≌△ADC,利用全等三角形的性質(zhì)就證明AE=AD.
          解答:證明:(1)∵△ABC是等邊三角形,
          ∴∠ABC=60°,
          ∵∠EFB=60°,
          ∴∠ABC=∠EFB,
          ∴EF∥DC(內(nèi)錯(cuò)角相等,兩直線平行),
          ∵DC=EF,
          ∴四邊形EFCD是平行四邊形;

          (2)證明:連接BE
          ∵BF=EF,∠EFB=60°,
          ∴△EFB是等邊三角形,
          ∴EB=EF,∠EBF=60°
          ∵DC=EF,
          ∴EB=DC,
          ∵△ABC是等邊三角形,
          ∴∠ACB=60°,AB=AC,
          ∴∠EBF=∠ACB,
          ∴△AEB≌△ADC,
          ∴AE=AD.
          點(diǎn)評(píng):此題把等邊三角形和平行四邊形結(jié)合在一起,首先利用等邊三角形的性質(zhì)證明平行四邊形,然后利用等邊三角形的性質(zhì)證明全等三角形,最后利用全等三角形的性質(zhì)解決問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
          (1)寫出B,C,D三點(diǎn)的坐標(biāo);
          (2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點(diǎn),求此拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
          (1)求證:DE為⊙O的切線.
          (2)已知DE=3,求:弧BD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線段AD的中點(diǎn),N是線段BE的中點(diǎn),
          求證:△CMN是等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
          (1)求證:△BCE≌△FDC;
          (2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過點(diǎn)E作BC的平行線,分別交AB,AC的延長(zhǎng)線于點(diǎn)F,G,聯(lián)結(jié)BE.
          (1)求證:△AEB≌△ADC;
          (2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

          查看答案和解析>>