日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象相交于點(diǎn)A(﹣2,1),點(diǎn)B(1,n).
          (1)求此一次函數(shù)和反比例函數(shù)的解析式;
          (2)請直接寫出滿足不等式kx+b﹣ <0的解集;
          (3)在平面直角坐標(biāo)系的第二象限內(nèi)邊長為1的正方形EFDG的邊均平行于坐標(biāo)軸,若點(diǎn)E(﹣a,a),如圖,當(dāng)曲線y= (x<0)與此正方形的邊有交點(diǎn)時,求a的取值范圍.

          【答案】
          (1)解:∵點(diǎn)A(﹣2,1)在反比例函數(shù)y= 的圖象上,

          ∴m=﹣2×1=﹣2,

          ∴反比例函數(shù)解析式為y=﹣

          ∵點(diǎn)B(1,n)在反比例函數(shù)y=﹣ 的圖象上,

          ∴﹣2=n,即點(diǎn)B的坐標(biāo)為(1,﹣2).

          將點(diǎn)A(﹣2,1)、點(diǎn)B(1,﹣2)代入y=kx+b中得:

          ,解得: ,

          ∴一次函數(shù)的解析式為y=﹣x﹣1


          (2)解:不等式﹣x﹣1﹣(﹣ )<0可變形為:﹣x﹣1<﹣ ,

          觀察兩函數(shù)圖象,發(fā)現(xiàn):

          當(dāng)﹣2<x<0或x>1時,一次函數(shù)圖象在反比例圖象下方,

          ∴滿足不等式kx+b﹣ <0的解集為﹣2<x<0或x>1


          (3)解:過點(diǎn)O、E作直線OE,如圖所示.

          ∵點(diǎn)E的坐標(biāo)為(﹣a,a),

          ∴直線OE的解析式為y=﹣x.

          ∵四邊形EFDG是邊長為1的正方形,且各邊均平行于坐標(biāo)軸,

          ∴點(diǎn)D的坐標(biāo)為(﹣a+1,a﹣1),

          ∵a﹣1=﹣(﹣a+1),

          ∴點(diǎn)D在直線OE上.

          將y=﹣x代入y=﹣ (x<0)得:

          ﹣x=﹣ ,即x2=2,

          解得:x=﹣ ,或x= (舍去).

          ∵曲線y=﹣ (x<0)與此正方形的邊有交點(diǎn),

          ∴﹣a≤﹣ ≤﹣a+1,

          解得: ≤a≤ +1.

          故當(dāng)曲線y= (x<0)與此正方形的邊有交點(diǎn)時,a的取值范圍為 ≤a≤ +1


          【解析】(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出反比例函數(shù)系數(shù)m,從而得出反比例函數(shù)解析式;由點(diǎn)B在反比例函數(shù)圖象上,即可求出點(diǎn)B的坐標(biāo),再由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)的解析式;(2)根據(jù)兩函數(shù)圖象的上下關(guān)系結(jié)合交點(diǎn)坐標(biāo),即可得出不等式的解集;(3)過點(diǎn)O、E作直線OE,求出直線OE的解析式,根據(jù)正方形的性質(zhì)找出點(diǎn)D的坐標(biāo),并驗(yàn)證點(diǎn)D在直線OE上,再將直線OE的解析式代入到反比例函數(shù)解析式中,求出交點(diǎn)坐標(biāo)橫坐標(biāo),結(jié)合函數(shù)圖象以及點(diǎn)D、E的坐標(biāo)即可得出關(guān)于a的一元一次不等式,解不等式即可得出結(jié)論.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,平面直角坐標(biāo)系中,矩形ABCD關(guān)于y軸對稱,點(diǎn)A,D在x軸上,BC交y軸于點(diǎn)F,E是OF的中點(diǎn),拋物線y=ax2+bx+c經(jīng)過B,E,C三點(diǎn),已知點(diǎn)B(﹣2,﹣2),解答下列問題:

          (1)填空:a= , b= , c=
          (2)如圖2,這P是上述拋物線上一點(diǎn),連接PF并延長交拋物線于另外一點(diǎn)Q,PM⊥x軸于M,QN⊥x軸于N.
          ①求證:PM+QN=PQ;
          ②若PQ=m,S四邊形PMNQ= m2 , 求直線PQ對應(yīng)的一次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列計算正確的是(
          A.(a2b)3=a6b3
          B.a6÷a2=a3(a≠0)
          C.a2=﹣ (a≠0)
          D. =2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算下列各題
          (1)已知4x=3y,求代數(shù)式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.
          (2)計算:π0+21 ﹣|﹣ |.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,長方形ABCD中,M為CD中點(diǎn),分別以點(diǎn)B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點(diǎn)P.若∠PMC=110°,則∠BPC的度數(shù)為(
          A.35°
          B.45°
          C.55°
          D.65°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校舉辦校級籃球賽,進(jìn)入決賽的隊(duì)伍有A、B、C、D,要從中選出兩隊(duì)打一場比賽.
          (1)若已確定A打第一場,再從其余三隊(duì)中隨機(jī)選取一隊(duì),求恰好選中D隊(duì)的概率.
          (2)請用畫樹狀圖或列表法,求恰好選中B、C兩隊(duì)進(jìn)行比賽的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線的頂點(diǎn)為C(1,﹣2),直線y=kx+m與拋物線交于A、B來兩點(diǎn),其中A點(diǎn)在x軸的正半軸上,且OA=3,B點(diǎn)在y軸上,點(diǎn)P為線段AB上的一個動點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這條拋物線交于點(diǎn)E.

          (1)求直線AB的解析式.
          (2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求點(diǎn)E的坐標(biāo)(用含x的代數(shù)式表示).
          (3)求△ABE面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
          (1)從中任意摸出1個球,恰好摸到紅球的概率是
          (2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表),求兩次都摸到紅球的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
          (1)求m、n的值
          (2)如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.

          查看答案和解析>>

          同步練習(xí)冊答案