日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD是正方形, GBC上任意一點,DE⊥AG于點E,BF⊥AG于點F.

          (1) 求證:DEBF = EF

          (2) 當(dāng)點GBC邊中點時, 試探究線段EFGF之間的數(shù)量關(guān)系, 并說明理由.

          (3) 若點GCB延長線上一點,其余條件不變.請畫出圖形,寫出此時DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

          【答案】1)通過三角形全等進而求證(2DEBF=AFAE=EF

          【解析】

          試題考查知識點:正方形;三角形的全等與相似;等量代換

          思路通過利用正方形的性質(zhì),證明三角形的全等與相似,然后利用等量代換。

          具體解答過程:

          1)、四邊形ABCD是正方形

          ∴∠BAD=90°,AB=AD

          ∵DE⊥AG,BF⊥AG

          ∴∠AFB=∠DEA=90°

          ∵∠AFB+∠DAE=90°,∠ADE+∠DAE=90°

          ∴∠AFB=∠ADE

          ∴Rt△AFB≌Rt△DEA

          ∴DE=AF,AE=BF

          ∴DEBF=AF-AE=EF

          2)、當(dāng)點GBC邊中點時,如下圖所示。

          四邊形ABCD是正方形,

          ∴AB=BC∠ABC=90°,AB:BG=2:1

          ∵∠AFB=∠ADE

          ∴Rt△AFB≌Rt△DEA∽Rt△ABG∽Rt△BFG

          ∴AE=BFAF=DE=2AE,BF=2FG,AE=EF

          ∴EF=2FG

          3)、如下圖所示。

          ∵DE⊥AG,BF⊥AG

          ∴∠AFB=∠DEA=90°

          ∵∠BAD=90°,∠EAF是平角,

          ∴∠EAD+∠FAB=90°

          ∵∠EAD+∠EDA=90°

          ∴∠FAB=∠EDA

          ∴Rt△AFB≌Rt△DEA

          ∴AE=BF,DE=AF

          ∴EF=EA+AFEF=DE+BF

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1已知∠ACB=30°,AB=1,

          (1)求證:△A1AD1≌△CC1B;

          (2)當(dāng)CC1=1時,求證:四邊形ABC1D1是菱形。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

          A. 6 B. 5 C. 4 D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:邊長為2的正方形OABC在平面直角坐標(biāo)系中位于x軸上方,OAx軸的正半軸的夾角為60°,則B點的坐標(biāo)為_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設(shè)△ACD,△BCE,△ABC的面積分別是S1,S2,S3,現(xiàn)有如下結(jié)論:

          ①S1∶S2=AC2∶BC2;②連接AE,BD,則△BCD≌△ECA;③若AC⊥BC,則S1·S2S23.

          其中結(jié)論正確的序號是__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)過實驗獲得兩個變量 x(x 0), y( y 0) 的一組對應(yīng)值如下表。

          x

          1

          2

          3

          4

          5

          6

          7

          y

          7

          3.5

          2.33

          1.75

          1.4

          1.17

          1

          (1)在網(wǎng)格中建立平面直角坐標(biāo)系,畫出相應(yīng)的函數(shù)圖象,求出這個函數(shù)表達(dá)式;

          (2)結(jié)合函數(shù)圖象解決問題:(結(jié)果保留一位小數(shù))

          的值約為多少?

          ②點A坐標(biāo)為(6,0),點B在函數(shù)圖象上,OA=OB,則點B的橫坐標(biāo)約是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B′C′D′的位置,使B′BD中點,連接AB′,C′D,AD′,BC′,如圖2.

          (1)求證:四邊形AB′C′D是菱形;

          (2)求四邊形ABC′D′的周長.

          1       2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校舉行以助人為樂,樂在其中為主題的演講比賽,比賽設(shè)一個第一名,一個第二名,兩個并列第三名.前四名中七、八年級各有一名同學(xué),九年級有兩名同學(xué),小蒙同學(xué)認(rèn)為前兩名是九年級同學(xué)的概率是,你贊成他的觀點嗎?請用列表法或畫樹形圖法分析說明.

          查看答案和解析>>

          同步練習(xí)冊答案