日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 配方法可以用來解一元二次方程,還可以用它來解決很多問題.
          因?yàn)?x2≥0,所以2x2+1就有個(gè)最小值1,即2x2+1≥1,只有當(dāng)x=0時(shí),才能得到這個(gè)式子的最小值1.同樣,因?yàn)?2x2≤0,所以-2x2+1有最大值1,即-2x2+1≤1,只有在x=0時(shí),才能得到這個(gè)式子的最大值1.
          ①當(dāng)x=
           
          時(shí),代數(shù)式3(x-1)2+3有最
           
          (填寫大或。┲禐
           
          ;
          ②當(dāng)x=
           
          時(shí),代數(shù)式-3x2+6x+1有最
           
          (填寫大或。┲禐
           
          ;
          ③矩形花園的一面靠墻,另外三面用柵欄圍成.
          (1)若柵欄的總長度是12m,當(dāng)花園與墻相鄰的兩邊的邊長x為多少時(shí),花園的面積y最大?最大面積是多少?
          (2)若柵欄的總長度為am,那么邊長x為多少時(shí),花園的面積y最大?最精英家教網(wǎng)大面積又是多少?
          分析:①3(x-1)2+3可理解為二次函數(shù)解析式的頂點(diǎn)式,開口向上,在頂點(diǎn)處,有最小值;
          ②-3x2+6x+1=-3(x-1)2+4,通過配方寫成頂點(diǎn)式,開口向下,在頂點(diǎn)處,有最大值;
          ③根據(jù)周長及圖形條件,表示矩形兩邊長,根據(jù)矩形面積公式列出二次函數(shù)解析式,由函數(shù)的性質(zhì)回答題目問題.
          解答:解:①代數(shù)式3(x-1)2+3為二次函數(shù)的頂點(diǎn)式,
          根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)x=1時(shí),函數(shù)有最小值為3;

          ②代數(shù)式-3x2+6x+1=-3(x-1)2+4為二次函數(shù)的頂點(diǎn)式,
          根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)x=1時(shí),函數(shù)有最大值為4;

          ③(1)花園與墻相鄰的兩邊的邊長x,另一邊長為12-2x,
          矩形花園面積為x(12-2x)=-2x2+12x,函數(shù)圖象開口向下,
          當(dāng)x=-
          12
          2×(-2)
          =3時(shí),y的最大值為18;
          (2)當(dāng)柵欄的總長度為a,花園與墻相鄰的兩邊的邊長x,另一邊長為a-2x,
          矩形花園面積為x(a-2x)=-2x2+ax,函數(shù)圖象開口向下,
          當(dāng)x=
          a
          4
          時(shí),y的最大值為
          a2
          8
          點(diǎn)評(píng):本題運(yùn)用了拋物線的頂點(diǎn)式求函數(shù)的最大(小)值,根據(jù)實(shí)際問題列二次函數(shù)解析式,用頂點(diǎn)坐標(biāo)公式求函數(shù)的最大(。┲担
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          24、閱讀并解答問題:
          配方法可以用來解一元二次方程,還可以用它來解決很多問題.因?yàn)?a2≥0,所以3a2+1就有個(gè)最小值1,即3a2+1≥1,只有當(dāng)a=0時(shí),才能得到這個(gè)式子的最小值1.同樣,因?yàn)?3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時(shí),才能得到這個(gè)式子的最大值1.
          ①當(dāng)x=
          1
          時(shí),代數(shù)式-2(x-1)2+3有最
          (填寫大或小)值為
          3

          ②當(dāng)x=
          1
          時(shí),代數(shù)式-2x2+4x+3有最
          (填寫大或。┲禐
          5

          分析配方:-2x2+4x+3=-2(x2-2x+
          1
          )+
          5
          =-2(x-1)2+
          5

          ③矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當(dāng)花園與墻相鄰的邊長為多少時(shí),花園的面積最大?最大面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          配方法可以用來解一元二次方程,還可以用它來解決很多問題.因?yàn)?a2≥0,所以3a2+1就有個(gè)最小值1,即3a2+1≥1,只有當(dāng)a=0時(shí),才能得到這個(gè)式子的最小值1.同樣,因?yàn)?3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時(shí),才能得到這個(gè)式子的最大值1.
          ①當(dāng)x=
          1
          1
          時(shí),代數(shù)式-2(x-1)2+3有最
          (填寫大或。┲禐
          3
          3

          ②當(dāng)x=
          2
          2
          時(shí),代數(shù)式2x2-8x+3有最
          (填寫大或小)值為
          -5
          -5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          配方法可以用來解一元二次方程,還可以用它來解決很多問題.例如:因?yàn)?a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此時(shí)a=0;同樣,因?yàn)?3(a+1)2≤0,所以-3(a+1)2+6≤6,即-3(a+1)2+6有最大值6,此時(shí) a=-1.
          ①當(dāng)x=
          1
          1
          時(shí),代數(shù)式-2(x-1)2+3有最
          (填寫大或小)值為
          3
          3

          ②當(dāng)x=
          2
          2
          時(shí),代數(shù)式-x2+4x+3有最
          (填寫大或。┲禐
          7
          7

          ③矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當(dāng)花園與墻相鄰的邊長為多少時(shí),花園的面積最大?最大面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          配方法可以用來解一元二次方程,還可以用它來解決很多問題.因?yàn)?a2≥0,所以3a2+1就有個(gè)最小值1,即3a2+1≥1,只有當(dāng)a=0時(shí),才能得到這個(gè)式子的最小值1.同樣,因?yàn)?3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時(shí),才能得到這個(gè)式子的最大值1.
          ①當(dāng)x=
          1
          2
          1
          2
          時(shí),代數(shù)式-2(x-
          1
          2
          )2+4
          有最
          (填寫大或。┲禐
          4
          4

          ②當(dāng)x=
          2
          2
          時(shí),代數(shù)式2x2-8x+3有最
          (填寫大或。┲禐
          -5
          -5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案