日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,菱形ABCD中,
          (1)若半徑為1的⊙O經(jīng)過點A、B、D,且∠A=60°,求此時菱形的邊長;
          (2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)

          【答案】
          (1)解:如圖,連接OA,作OE⊥AB,
          ∵四邊形ABCD為菱形,
          ∴AB=AD,
          ∵∠A=60°,
          ∴△ABD為等邊三角形,
          ∵半徑為1的⊙O經(jīng)過點A、B、D,OE⊥AB,
          ∴∠OAE=30°,AB=2AE,
          ∴cos∠OAE=cos30=,
          ∴AE=
          ∴AB=2AE=,
          ∴菱形的邊長為.


          (2)解:如圖:連接PD,以點P為圓心PD為半徑畫弧交BC于點D′,連接DD′,過點P作D′D的垂線a,直線a即為所求直線.


          【解析】(1)連接OA,作OE⊥AB,由菱形的性質(zhì)得AB=AD,由等邊三角形的判定——有一個角是60°的等腰三角形是等邊三角形,即△ABD為等邊三角形,再根據(jù)垂徑定理得∠OAE=30°,AB=2AE,由銳角三角函數(shù)得cos∠OAE=cos30°=,即AE=,得AB=2AE=
          (2)由菱形和垂直平分線的性質(zhì)根據(jù)題意即可畫出圖形.
          【考點精析】根據(jù)題目的已知條件,利用等邊三角形的判定和菱形的性質(zhì)的相關知識可以得到問題的答案,需要掌握三個角都相等的三角形是等邊三角形;有一個角等于60°的等腰三角形是等邊三角形;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,RtACB中,∠C90°,AC5cm,BC2cm,點PB點出發(fā)以1cm/s的速度沿CB延長線運動,運動時間為t秒.以AP為斜邊在其上方構造等腰直角APD.當t1秒時,則CD_____cm,當D運動的路程為4cm時,則P運動時間t_____秒.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線AB,CD相交于點O,OD平分∠BOE,OF平分∠AOD.

          1)若∠AOC=32°,求∠EOF的度數(shù);

          2)若∠EOF=60°,求∠AOC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】汽車油箱中的余油量(升是它行駛的時間(小 時) 的一次函數(shù) 某天該汽車外出時, 油箱中余油量與行駛時間的變化關系如圖:

          1 根據(jù)圖象, 求油箱中的余油與行駛時間的函數(shù)關系

          2 從開始算起, 如果汽車每小時行駛 40 千米, 當油箱中余油 20 升時, 該汽車行駛了多少千米?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我國是一個嚴重缺水的國家 為了加強公民的節(jié)水意識, 某市制定了如下用水收費標準: 每戶每月的用水不超過 6 噸時, 水價為每噸 2 元, 超過 6 噸時, 超過的部分按每噸 3 元收費 該市某戶居民 5 月份用水噸, 應交水費

          1 ,請寫出的函數(shù)關系式

          2 ,請寫出的函數(shù)關系式

          3 在同一坐標系下, 畫出以上兩個函數(shù)的圖象

          4 如果該戶居民這個月交水費 27 元, 那么這個月該戶用了多少噸水?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(問題情境)

          如圖1,四邊形ABCD是正方形,MBC邊上的一點,ECD邊的中點,AE平分∠DAM

          (探究展示)

          (1)證明:AM=AD+MC;

          (2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

          (拓展延伸)

          (3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結論是否成立?請分別作出判斷,不需要證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列說法:;數(shù)軸上的點與實數(shù)成一一對應關系;兩條直線被第三條直線所截,同位角相等;垂直于同一條直線的兩條直線互相平行;兩個無理數(shù)的和還是無理數(shù);無理數(shù)都是無限小數(shù),其中正確的個數(shù)有 ___________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形ABCD位于平面直角坐標系中,A、By軸上,且其坐標分別為A0a)和B0,-b),D點坐標為(-c,a)CDx軸交于E. 其中a、b、c均為正數(shù),且滿足.

          1)請判斷△ABD的形狀并說明理由.

          2)如圖,將圖形沿AM折疊,使D落在x軸上F點,若現(xiàn)有一長度為a的線段,可與線段EF、OF構成直角三角形,求a的值.

          3)若Px軸正半軸上一點,且滿足∠APB=45°,請求出P點坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,連接DE,BF,BD.

          (1)求證:△ADE≌△CBF.
          (2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結論.

          查看答案和解析>>

          同步練習冊答案