日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          24、已知:如圖①,△ABC是等邊三角形,四邊形BDEF是菱形,其中DF=DB,連接AF、CD.
          (1)觀察圖形,猜想AF與CD之間有怎樣的數量關系?直接寫出結論,不必證明;
          (2)將菱形BDEF繞點B 按順時針方向旋轉,使菱形BDEF的一邊落在等邊△ABC內部,在圖②中畫出一個變換后的圖形,并對照已知圖形標記字母,請問:(1)中的結論是否仍然成立?若成立,請證明;若不成立,請說明理由;
          (3)在上述旋轉過程中,AF、CD所夾銳角的度數是否發(fā)生變化?若不變,請你求出它的度數,并說明你的理由;若改變,請說明它的度數是如何變化的.
          分析:(1)根據△AFB≌△CDB可以得到兩線段相等;
          (2)圖形變化后一般情況下結論不變,在此基礎上進一步證明兩個三角形全等即可得到正確的結論;
          (3)設CD與AF交于點O,與AB交于點G,證得∠AOC=∠ABC=60°即可.
          解答:(本小題滿分7分)
          解:(1)AF=CD.

          (2)變換后的菱形BDEF如圖,結論AF=CD仍然成立.
          理由:在等邊△ABC中,AB=BC,
          在菱形BDEF中,BF=BD.
          ∵DF=DB,∴DF=DB=BF.
          ∴∠FBD=∠ABC=60°.
          ∴∠FBD-∠1=∠ABC-∠1.
          即∠2=∠3.
          ∴△ABF≌△CBD.
          ∴AF=CD.

          (3)不變化;60°.
          設CD與AF交于點O,與AB交于點G,
          由(2)知:∠BAF=∠BCD,
          又∠AGO=∠CGB,
          ∴∠AOC=∠ABC=60°.
          即AF與CD所夾銳角始終為60°.
          點評:本題考查了旋轉的性質,解題的關鍵是正確的利用旋轉不變量,從而為證明全等提供必要的條件.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          精英家教網已知,如圖,DC∥AB,且DC=
          12
          AB,E為AB的中點.
          (1)求證:△AED≌△EBC;
          (2)觀察圖形,在不添加輔助線的情況下,除△EBC外,請再寫出兩個與△AED的面積相等的三角形(直接寫出結果,不要求證明):
           

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          12、已知:如圖,CD∥AB,∠A=40°,∠B=60°,那么∠1=
          80
          度,∠2=
          60
          度.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知:如圖,線段AB=10cm,點C為線段AB上一點,BC=3cm,點D、點E分別為AC和AB的中點,則線段DE的長為
           
          cm,請對你所得到的結論加以證明.
          精英家教網

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          17、已知:如圖,CE⊥AB,DF⊥AB,AF=BE,CE=DF.
          求證:(1)∠A=∠B;(2)AC∥DB.

          查看答案和解析>>

          同步練習冊答案