日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,平面直角坐標系中,拋物線y=-x2+3x+4與x軸交于點A、B(A在左側),與y軸交于點C,拋物精英家教網線的頂點為點M,對稱軸與線段BC交于點N,點P為線段BC上一個動點(與B、C不重合).
          (1)求點A、B的坐標;
          (2)在拋物線的對稱軸上找一點D,使|DC-DB|的值最大,求點D的坐標;
          (3)過點P作PQ∥y軸與拋物線交于點Q,連接QM,當四邊形PQMN滿足有一組對邊相等時,求P點的坐標.
          分析:(1)根據二次函數(shù)與圖象的交點坐標求法,y=0,求出x即可;
          (2)利用軸對稱圖形的性質可以得出D點坐標的位置,利用D點在直線AC解析式上,即可求出;
          (3)利用平行四邊形的性質以及等腰梯形性質分別求出即可.
          解答:精英家教網解:(1)∵拋物線y=-x2+3x+4與x軸交于點A、B(A在左側),
          ∴拋物線與x軸的交點坐標為:0=-x2+3x+4,
          解得:x1=-1,x2=4,
          A(-1,0)、B(4,0);

          (2)連接AC并延長交拋物線的對稱軸于D,
          將A(-1,0),C(0,4)點的坐標代入:Y=kx+b,
          b=4
          -k+b=0

          解得:b=4,k=4,
          求出直線AC解析式:y=4x+4,
          將x=1.5,代入y=4x+4得,
          y=10,
          ∴D點坐標(1.5,10)
          精英家教網
          (3)設P(x,-x+4),Q(x,-x2+3x+4),
          ①四邊形PQMN是平行四邊形,此時PQ=MN,
          由題意得,
          25
          4
          -
          5
          2
          =(-x2+3x+4)-(-x+4)
          解得:x=2.5,x=1.5(舍去)
          此時P(2.5,1.5),
          ②四邊形PQMN是等腰梯形,此時PN=QM進一步得MG=NH(QG、PH是所添的垂線段),
          從而得方
          25
          4
          +x2-3x-4=-x+4-
          5
          2
          ,
          解得x=0.5,x=1.5(舍去),
          此時P(0.5,3.5),
          綜合上述兩種情況可知:當四邊形PQMN滿足有一組對邊相等時,
          P點的坐標為(2.5,1.5)或(0.5,3.5).
          點評:此題主要考查了二次函數(shù)與一次函數(shù)的綜合應用以及平行四邊形與梯形的性質等知識,二次函數(shù)的綜合應用是初中階段的難點問題,同學們在解答的過程中特別注意解題的技巧性從而降低計算量.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
          1x
          上運動,則B點在函數(shù)解析式
           
          上運動.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網=2
          3

          (1)求⊙P的半徑.
          (2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉90°,則點O的對應點C的坐標為(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
          a+2
          +|b-2|+(c-b)2=0
          .點D為線段OA上一動點,連接CD.
          (1)判斷△ABC的形狀并說明理由;
          (2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
          S△CAD
          S△DGH
          =
          AD
          GH

          (3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
          FC+2AE
          3AM
          的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案