日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 課題學習
          ●探究:
          (1)在圖1中,已知線段AB,CD,其中點分別為E,F(xiàn).
          ①若A(-1,0),B(3,0),則E點坐標為______;
          ②若C(-2,2),D(-2,-1),則F點坐標為______;
          (2)在圖2中,已知線段AB的端點坐標為A(a,b),B(c,d),求出圖中AB中點D的坐標(用含a,b,c,d的
          代數(shù)式表示),并給出求解過程.
          ●歸納:
          無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為A(a,b),B(c,d),AB中點為D(x,y) 時,
          x=______,y=______.(不必證明)
          ●運用:
          在圖2中,y=|x-1|的圖象x軸交于P點.一次函數(shù)y=kx+1與y=|x-1|的圖象交點為A,B.
          ①求出交點A,B的坐標(用k表示);
          ②若D為AB中點,且PD垂直于AB時,請利用上面的結論求出k的值.

          【答案】分析:(1)從在數(shù)軸上的兩個特殊需要點的找到中點與端點坐標的關系,再到象限一般情況中點與端點的坐標關系.通過觀察,從特殊到一般;再利用數(shù)形結合的思想,利用中點坐標公式求解.
          (2)求出線段中點坐標分別是兩個端點縱、橫坐標的平均值.絕對值函數(shù)的圖象畫法,Y的值都是非負數(shù).
          解答:解:探究(1)①(1,0);②(-2,);

          (2)過點A,D,B三點分別作x軸的垂線,垂足分別為A′,D′,B′,則AA′∥BB′∥DD′.
          過A、B分別作直線DD'的垂線,垂足分別為H、G.

          ∴AH=BG,又AH=A′D′;BG=D′B′
          ∴A′D′=D′B′.x-a=c-x,
          即D點的橫坐標是
          同理又HD=DG,d-y=y-b,
          可得D點的縱坐標是
          ∴AB中點D的坐標為(,).
          歸納:
          ●運用,,

          ,k=0.
          點評:本題考查了一次函數(shù)的綜合運用:從在數(shù)軸上的兩個特殊需要點的找到中點與端點坐標的關系,再到象限一般情況中點與端點的坐標關系.通過觀察,從特殊到一般;再利用數(shù)形結合的思想,利用中點坐標公式求解.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          某課題學習在探討一團周長為4a的線圈時,發(fā)現(xiàn)了如下兩個命題:
          命題1:如圖①,當線圈做成正三角形ABC時,能被半徑為a的圓形紙片完全蓋。
          命題2:如圖②,當線圈做成正方形ABCD時,能被半徑為a的圓形紙片完全蓋。
          請你繼續(xù)探究下列幾個問題:
          (1)如圖③,當線圈做成正五邊形ABCDE時,請說明能被半徑為a的圓形紙片完全蓋住;
          (2)如圖④,當線圈做成平行四邊形ABCD時,能否被半徑為a的圓形紙片完全蓋住請說明理由;
          (3)如圖⑤,當線圈做成任意形狀的圖形時,是否還能被半徑為a的圓形紙片完全蓋?若能蓋住,請通過計算說明;若不能蓋住,請你說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
          (1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
          (2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
          (3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
          I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
          II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖1,點C將線段AB分成兩部分,如果
          AC
          AB
          =
          BC
          AC
          ,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
          S1
          S
          =
          S2
          S1
          ,那么稱直線l為該圖形的黃金分割線.

          (1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
          (2)研究小組在進一步探究中發(fā)現(xiàn):過點C任作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          課題學習
          ●探究:
          (1)在圖1中,已知線段AB,CD,其中點分別為E,F(xiàn).
          ①若A(-1,0),B(3,0),則E點坐標為
           
          ;
          ②若C(-2,2),D(-2,-1),則F點坐標為
           

          (2)在圖2中,已知線段AB的端點坐標為A(a,b),B(c,d),求出圖中AB中點D的坐標(用含a,b,c,d的
          代數(shù)式表示),并給出求解過程.
          ●歸納:
          無論線段AB處于直角坐標系中的哪個位置,當其端點坐標為A(a,b),B(c,d),AB中點為D(x,y) 時,
          x=
           
          ,y=
           
          .(不必證明)
          ●運用:
          在圖2中,y=|x-1|的圖象x軸交于P點.一次函數(shù)y=kx+1與y=|x-1|的圖象交點為A,B.
          ①求出交點A,B的坐標(用k表示);
          ②若D為AB中點,且PD垂直于AB時,請利用上面的結論求出k的值.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習冊答案