日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】直線y=﹣ x+3和x軸、y軸的交點分別為B、C,點A的坐標是(﹣ ,0),另一條直線經(jīng)過點A、C.

          (1)求線段AC所對應的函數(shù)表達式;
          (2)動點M從B出發(fā)沿BC運動,速度為1秒一個單位長度.當點M運動到C點時停止運動.設(shè)M運動t秒時,△ABM的面積為S.
          ①求S與t的函數(shù)關(guān)系式;
          ②當t為何值時,S= SABC , (注:SABC表示△ABC的面積),求出對應的t值;
          ③當t=4的時候,在坐標軸上是否存在點P,使得△BMP是以BM為直角邊的直角三角形?若存在,請直接寫出P點坐標,若不存在,請說明理由.

          【答案】
          (1)

          解:當y=0時,﹣ x+3=0,解得x=3 ,即B(3 ,0)

          當x=0時,y=3,即C點坐標是(0,3)

          設(shè)線段AC所對應的函數(shù)表達式y(tǒng)=kx+b,圖象經(jīng)過A、C點,得

          解得

          故線段AC所對應的函數(shù)表達式y(tǒng)= x+3


          (2)

          解:如圖1,

          ①由動點M從B出發(fā)沿BC運動,速度為1秒一個單位長度,行駛t秒,得BM=t,

          由線段的和差,得AB=3 ﹣(﹣ )=4

          由正切函數(shù),得tan∠B= = = ,∠ABC=30°,

          由正弦函數(shù),得MD=BMsin∠ABC= t.

          由三角形面積公式,得S= ABMD= × t×4 = t

          即S= t;

          ②由S= SABC,得MD= OC= ,即 t= ,解得t=3,

          當t=3時,S= SABC;

          ③如圖2:

          當t=4時,在坐標軸上存在點P,使得△BMP是以BM為直角邊的直角三角形,

          (i)如圖2,

          ∵點M運動的速度為每秒1個單位長度,

          ∴當t=4時,BM=4,

          ∵∠ABC=30°,∠PMB=90°,

          ∴BP=BM÷cos30°=4÷ = ,

          ∴OP=OB﹣BP=3 = ,

          ∴點P的坐標是( ,0).

          (ii)如圖3,

          PM和AB相交于點N,,

          ∵點M運動的速度為每秒1個單位長度,

          ∴當t=4時,BM=4,

          ∵∠ABC=30°,∠NMB=90°,

          ∴BN=BM÷cos30°=4÷ = ,

          ∴ON=OB﹣BN=3 =

          ∵∠MNB=90°﹣30°=60°,∠ONP=∠MNB,

          ∴∠ONP=60°,

          ∴OP=ONtan60°= =1,

          ∴點P的坐標是(0,﹣1).

          (iii)如圖4,

          ∵OC=3,∠ABC=30°,∠BOC=90°,

          ∴BC=2×3=6,∠PCB=90°﹣30°=60°,

          又∵∠PBC=90°,

          ∴∠BPC=90°﹣60°=30°,

          ∴CP=2BC=2×6=12,

          ∴OP=CP﹣OC=12﹣3=9,

          ∴點P的坐標是(0,﹣9).

          綜上,可得

          當t=4時,在坐標軸上存在點P,使得△BMP是以BM為直角邊的直角三角形,

          點P的坐標是( ,0)、(0,﹣1)或(0,﹣9).


          【解析】(1)根據(jù)函數(shù)值,可得相應自變量的值,根據(jù)自變量的值,可得相應的函數(shù)值,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)M的運動時間及運動速度,可得BM的長,根據(jù)正切函數(shù)值,可得∠B的大小,再根據(jù)正弦函數(shù),可得MD的長,根據(jù)線段的和差,可得AB的長,根據(jù)三角形的面積公式,可得答案;②根據(jù)等底三角形面積間的S= SABC的關(guān)系,可得MD= OB,可得答案;③根據(jù)題意,分三種情況:①點P在x軸上時;②點P在y軸上,且BP為斜邊時;③點P在y軸上,且BP為另一條直角邊時;然后根據(jù)直角三角形的性質(zhì)分類討論,求出P點坐標各是多少即可.
          【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的性質(zhì)的相關(guān)知識,掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】先化簡再求值:(3x2xy+y)2(5xy4x2+y),其中x=2,y=1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當△DCE旋轉(zhuǎn)至點AD,E在同一直線上,連接BE,易證△BCE≌△ACD.則

          ①∠BEC=______°;②線段AD、BE之間的數(shù)量關(guān)系是______.

          (2)拓展研究:

          如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.

          (3)探究發(fā)現(xiàn):

          如圖3,P為等邊△ABC內(nèi)一點,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】兩個全等的三角尺重疊放在△ACB的位置,將其中一個三角尺繞著點C按逆時針方向旋轉(zhuǎn)至△DCE的位置,使點A恰好落在邊DE上,AB與CE相交于點F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=cm.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):

          鴨的質(zhì)量/千克

          0.5

          1

          1.5

          2

          2.5

          3

          3.5

          4

          烤制時間/

          40

          60

          80

          100

          120

          140

          160

          180

          設(shè)鴨的質(zhì)量為x千克,烤制時間為t,估計當x=3.2千克時,t的值為(  )

          A140 B138 C148 D160

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算﹣2+1的結(jié)果是( 。
          A.-3
          B.-1
          C.3
          D.1

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】大潤發(fā)超市在銷售某種進貨價為20元/件的商品時,以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價每上漲1元/件,其銷售量就將減少2件.

          (1)為了實現(xiàn)每天1600元的銷售利潤,超市應將這種商品的售價定為多少?

          (2)設(shè)每件商品的售價為x元,超市所獲利潤為y元.

          ①求yx之間的函數(shù)關(guān)系式;

          ②物價局規(guī)定該商品的售價不能超過40元/件,超市為了獲得最大的利潤,應將該商品售價定為多少?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD,AC、BD交于點O,點E、F分別在AB、BC上,且∠EOF=90°,則下列結(jié)論①AE=BF,②OE=OF,③BE+BF=AD,④AE2+CF2=2OE2中正確的有(只寫序號)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在數(shù)軸上與﹣1相距3個單位長度的點表示的有理數(shù)是

          查看答案和解析>>

          同步練習冊答案