日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在平面直角坐標(biāo)系中,正方形OABC的頂點AC分別在x軸和y軸正半軸上,點B坐標(biāo)為(3,3),拋物線y=﹣x2+bx+c過點AC,交x軸負(fù)半軸于點D,與BC邊的另一個交點為E,拋物線的頂點為M,對稱軸交x軸于點N

          1)求拋物線的函數(shù)關(guān)系式;

          2)點P在直線MN上,求當(dāng)PE+PA的值最小時點P的坐標(biāo);

          3)如圖2,探索在x軸是否存在一點F,使∠CFO=CDO﹣CAO?若存在,求點F的坐標(biāo);不存在,說明理由;

          4)將拋物線沿y軸方向平移m個單位后,頂點為Q,若QO平分∠CQN,求點Q的坐標(biāo).

          【答案】1y=-x2+2x+3;(2P1,2)(3F60),(-6,0);(4Q1, ),(1,

          【解析】試題分析:(1)由已知條件易得點A和點C的坐標(biāo),再利用待定系數(shù)法即可求得函數(shù)的解析式;(2AC與對稱軸的交點就是P,利用待定系數(shù)法求得AC的解析式,即可求得點P的坐標(biāo);(3)在y軸的正半軸上截取OH=OD=1,則H的坐標(biāo)是(0,1),延長DHAC于點G,則DG⊥AC,∠CDH=∠CDO﹣∠CAO,當(dāng)Fx軸的負(fù)半軸上時,當(dāng)∠CFO=∠CDH=∠CDO﹣∠CAO時,則△CFO∽△CDG,根據(jù)相似三角形的對應(yīng)邊的比相等即可求得OF的長,則F的坐標(biāo)即可求得,然后根據(jù)對稱性求得Fx軸的正半軸時的坐標(biāo);

          4)當(dāng)拋物線沿y軸的正半軸移動時,Q的橫坐標(biāo)是1,QO平分∠CQN,則CQ=OC,利用勾股定理即可求得Q的縱坐標(biāo);同理求得拋物線沿y軸的負(fù)半軸移動時Q的坐標(biāo).

          試題解析: 解:(1四邊形OABC是正方形,B的坐標(biāo)是(3,3),

          ∴A的坐標(biāo)是(3,0),C的坐標(biāo)是(0,3).

          根據(jù)題意得,

          解得:

          則二次函數(shù)的解析式是y=﹣x2+2x+3;

          2)設(shè)直線AC的解析式是y=ax+b,

          解得:,

          則直線AC的解析式是y=﹣x+3

          當(dāng)x=1時,y=﹣1+3=2

          P的坐標(biāo)是(1,2);

          3)在y=﹣x2+2x+3中令y=0,則﹣x2+2x+3=0,解得x=﹣1x=3

          D的坐標(biāo)是(﹣1,0A的坐標(biāo)是(30).

          y軸的正半軸上截取OH=OD=1,則H的坐標(biāo)是(0,1),延長DHAC于點G,則DG⊥AC

          直角△ODF中,OH=OD,

          ∴∠HDO=45°

          同理,∠CAO=45°,

          ∴∠HDO=∠CAO.則∠CDH=∠CDO﹣∠CAO

          當(dāng)Fx軸的負(fù)半軸上時,

          設(shè)DG的解析式是y=ex+f,則,

          解得,則DG的解析式是y=x+1

          根據(jù)題意得:,

          解得:

          G的坐標(biāo)是(1,2).

          DG=CD=,CG=

          當(dāng)∠CFO=∠CDH=∠CDO﹣∠CAO時,△CFO∽△CDG

          ,即,解得:OF=6,

          F的坐標(biāo)是(﹣6,0).

          根據(jù)對稱性可得當(dāng)Fx軸的正半軸上時F的坐標(biāo)是(6,0);

          4)當(dāng)拋物線沿y軸的正半軸移動時,如圖3

          設(shè)Q的坐標(biāo)是(1,n).作QI⊥y軸于點I.則IQ=1,IC=n﹣3,

          QO平分∠CQN,則CQ=OC=3,12+n﹣32=32

          解得:n=3+2,

          Q的坐標(biāo)是(13+2);

          同理,當(dāng)拋物線沿y軸的負(fù)方向移動時Q的坐標(biāo)是(13﹣2).

          總之,Q的坐標(biāo)是(1,3+2)或(1,3﹣2).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】15(a2b-ab2)-2(ab23a2b);

          2-2a(3a-1)-(a-5);

          3)先化簡,再求值:x-2(x-y2)+(x+y2),其中x-2y

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市舉辦中學(xué)生足球賽,初中男子組共有市直學(xué)校的A、B兩隊和縣區(qū)學(xué)校的ef、g、h四隊報名參賽,六支球隊分成甲、乙兩組,甲組由A、e、f三隊組成,乙組由B、g、h三隊組成,現(xiàn)要從甲、乙兩組中各隨機(jī)抽取一支球隊進(jìn)行首場比賽.

          1)在甲組中,首場比賽抽到e隊的概率是

          2)請你用畫樹狀圖或列表的方法,求首場比賽出場的兩個隊都是縣區(qū)學(xué)校隊的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直角坐標(biāo)平面內(nèi),小明站在點A(﹣10,0)處觀察y軸,眼睛距地面1.5米,他的前方5米處有一堵墻DC,若墻高DC2米,則小明在y軸上的盲區(qū)(即OE的長度)為_____米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.

          (1)求證:∠DAF=∠CDE;

          (2)求證:△ADF∽△DEC;

          (3)若AE=6,AD=8,AB=7,求AF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四川雅安發(fā)生地震后,某校學(xué)生會向全校1900名學(xué)生發(fā)起了“心系雅安”捐款活動,為了解捐款情況,學(xué)會生隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖和圖,請根據(jù)相關(guān)信息,解答下列是問題:

          (1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為    ,圖中m的值是    

          (2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

          (3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學(xué)生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明家想要從某場購買洗衣機(jī)和烘干機(jī)各一臺,現(xiàn)在分別從兩個品牌中各選中一款洗衣機(jī)和一款烘干機(jī),它們的單價如表1所示.目前該商場有促銷活動,促銷方案如表2所示.

          2:商場促銷方案

          1. 所有商品均享受8折優(yōu)惠.

          2. 所有洗衣機(jī)均可享受節(jié)能減排補

          貼,補貼標(biāo)準(zhǔn)為:在折后價的基礎(chǔ)t.

          再減免13%。

          3.若同時購買同品牌洗 衣機(jī)和烘干

          機(jī),額外可享受滿兩件減400"

          則選擇_____品種的洗衣機(jī)和_____品種的烘干機(jī)支付總費用最低,支付總費用最低為___________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知∠1=∠2,則下列條件中,不能使△ABC≌△DBC成立的是。ā 。

          A. ABCD B. ACBD C. A=∠D D. ABC=∠DCB

          查看答案和解析>>

          同步練習(xí)冊答案