日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CEAB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論:①∠BAD=ABC;GP=GD;③點PACQ的外心;④APAD=CQCB.其中正確的是(  )

          A. ①②③ B. ②③④ C. ①③④ D. ①②③④

          【答案】B

          【解析】

          ①錯誤,假設(shè)成立,推出矛盾即可;

          ②正確.想辦法證明∠GPD=∠GDP即可;

          ③正確.想辦法證明PC=PQ=PA即可;

          ④正確.證明△APF∽△ABD,可得APAD=AFAB,證明△ACF∽△ABC,可得AC2=AFAB,證明△CAQ∽△CBA,可得AC2=CQCB,由此即可解決問題;

          解:①錯誤,假設(shè)∠BAD=∠ABC,則弧BD=AC,

          AC=CD,

          BD=AC=CD,顯然不可能,故①錯誤.

          ②正確.連接OD.

          ∵GD是切線,

          ∴DG⊥OD,

          ∴∠GDP+∠ADO=90°,

          ∵OA=OD,

          ∴∠ADO=∠OAD,

          ∵∠APF+∠OAD=90°,∠GPD=∠APF,

          ∴∠GPD=∠GDP,

          ∴GD=GP,故②正確.

          ③正確.∵AB⊥CE,

          AE=AC,

          AC=CD,

          CD=AE,

          ∴∠CAD=∠ACE,

          ∴PC=PA,

          ∵AB是直徑,

          ∴∠ACQ=90°,

          ∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,

          ∴∠PCQ=∠PQC,

          ∴PC=PQ=PA,

          ∵∠ACQ=90°,

          ∴點P是△ACQ的外心.故③正確.

          正確.連接BD.

          ∵∠AFP=∠ADB=90°,∠PAF=∠BAD,

          ∴△APF∽△ABD,

          =,

          ∴APAD=AFAB,

          ∵∠CAF=∠BAC,∠AFC=∠ACB=90°,

          ∴△ACF∽△ABC,

          可得AC2=AFAB,

          ∵∠ACQ=∠ACB,∠CAQ=∠ABC,

          ∴△CAQ∽△CBA,可得AC2=CQCB,

          ∴APAD=CQCB.故④正確,

          故選:B.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知△

          1)在圖中用直尺和圓規(guī)作出的平分線和邊的垂直平分線交于點(保留作圖痕跡,不寫作法).

          2)在(1)的條件下,若點、分別是邊上的點,且,連接求證:

          3)如圖,在(1)的條件下,點、分別是邊上的點,且△的周長等于邊的長,試探究的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在邊長為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點,在格點中任 意放置點 C,恰好能使ABC 的面積為 1,則這樣的 C 點有 ( )

          A. 5 B. 6 C. 7 D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點A1,-1),B2,3),點Px軸上一點,當(dāng)|PA-PB|的值最大時,點P的坐標為(    

          A.-1,0B.0C.,0D.1,0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀理解

          在平面直角坐標系xoy中,兩條直線l1y=k1x+b1k1≠0),l2y=k2x+b2k2≠0),①當(dāng)l1l2時,k1=k2,且b1b2②當(dāng)l1l2時,k1·k2=1

          類比應(yīng)用

          1)已知直線ly=2x1,若直線l1y=k1x+b1與直線l平行,且經(jīng)過點A(-21),試求直線l1的表達式;

          拓展提升

          2)如圖,在平面直角坐標系xoy中,ABC的頂點坐標分別為:A0,2),B4,0),C(-1,-1),試求出AB邊上的高CD所在直線的表達式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,的平分線相交于點,過,交于點,交于點.,則線段的長為______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,O為正方形ABCD對角線的交點,EAB邊上一點,FBC邊上一點,EBF的周長等于BC的長.

          (1)若AB=12,BE=3,求EF的長;

          (2)求∠EOF的度數(shù);

          (3)若OE=OF,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知E是正方形ABCD的邊CD上一點,BFAEF.

          (1)求證:△ABF∽△EAD;

          (2)當(dāng)AD=2,=時,求AF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小晶和小紅玩擲骰子游戲,每人將一個各面分別標有數(shù)字、、、的正方體骰子擲一次,把兩人擲得的點數(shù)相加,并約定:若點數(shù)之和等于,則小晶贏;若點數(shù)之和等于,則小紅贏;若點數(shù)之和是其他數(shù),則兩人不分勝負,那么(

          A. 小晶贏的機會大 B. 小紅贏的機會大

          C. 小晶、小紅贏的機會一樣大 D. 不能確定

          查看答案和解析>>

          同步練習(xí)冊答案