日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B兩點(diǎn),與y軸交于C點(diǎn),其對稱軸為直線x=1.

          (1)直接寫出拋物線的解析式:;
          (2)把線段AC沿x軸向右平移,設(shè)平移后A、C的對應(yīng)點(diǎn)分別為A′、C′,當(dāng)C′落在拋物線上時,求A′、C′的坐標(biāo);
          (3)除(2)中的點(diǎn)A′、C′外,在x軸和拋物線上是否還分別存在點(diǎn)E、F,使得以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,求出E、F的坐標(biāo);若不存在,請說明理由.

          【答案】
          (1)y=﹣ x2+x+4
          (2)

          解:由拋物線y=﹣ x2+x+4可知C(0,4),

          ∵拋物線的對稱軸為直線x=1,根據(jù)對稱性,

          ∴C′(2,4),

          ∴A′(0,0)


          (3)

          解:存在.

          設(shè)F(x,﹣ x2+x+4).

          以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形,

          ①若AC為平行四邊形的邊,如答圖1﹣1所示,則EF∥AC且EF=AC.

          過點(diǎn)F1作F1D⊥x軸于點(diǎn)D,則易證Rt△AOC≌Rt△E1DF1

          ∴DE1=2,DF1=4.

          ∴﹣ x2+x+4=﹣4,

          解得:x1=1+ ,x2=1﹣

          ∴F1(1+ ,﹣4),F(xiàn)2(1﹣ ,﹣4);

          ∴E1(3+ ,0),E2(3﹣ ,0).

          ②若AC為平行四邊形的對角線,如答圖1﹣2所示.

          ∵點(diǎn)E3在x軸上,∴CF3∥x軸,

          ∴點(diǎn)C為點(diǎn)A關(guān)于x=1的對稱點(diǎn),

          ∴F3(2,4),CF3=2.

          ∴AE3=2,

          ∴E3(﹣4,0),

          綜上所述,存在點(diǎn)E、F,使得以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形;

          點(diǎn)E、F的坐標(biāo)為:E1(3+ ,0),F(xiàn)1(1+ ,﹣4);E2(3﹣ ,0),F(xiàn)2(1﹣ ,﹣4);E3(﹣4,0),F(xiàn)3(2,4)


          【解析】解:(1)∵A(﹣2,0),對稱軸為直線x=1.
          ∴B(4,0),
          把A(﹣2,0),B(4,0)代入拋物線的表達(dá)式為:

          解得: ,
          ∴拋物線的解析式為:y=﹣ x2+x+4;
          【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過點(diǎn)A(1, );點(diǎn)F(0,1)在y軸上.直線y=﹣1與y軸交于點(diǎn)H.

          (1)求二次函數(shù)的解析式;
          (2)點(diǎn)P是(1)中圖象上的點(diǎn),過點(diǎn)P作x軸的垂線與直線y=﹣1交于點(diǎn)M,求證:FM平分∠OFP;
          (3)當(dāng)△FPM是等邊三角形時,求P點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(3,0),與y軸交于C(0,3),頂點(diǎn)為D(1,4),對稱軸為DE.

          (1)拋物線的解析式是;
          (2)如圖(2),點(diǎn)P是AD上一個動點(diǎn),P′是P關(guān)于DE的對稱點(diǎn),連接PE,過P′作P′F∥PE交x軸于F.設(shè)S四邊形EPP′F=y,EF=x,求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
          (3)在(1)中的拋物線上是否存在點(diǎn)Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標(biāo);若不存在.請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】開學(xué)初,小芳和小亮去學(xué)校商店購買學(xué)習(xí)用品,小芳用30元錢購買鋼筆的數(shù)量是小亮用25元錢購買筆記本數(shù)量的2倍,已知每支鋼筆的價格比每本筆記本的價格少2

          (1)求每支鋼筆和每本筆記本各是多少元;

          (2)學(xué)校運(yùn)動會后,班主任再次購買上述價格的鋼筆和筆記本共50件作為獎品,獎勵給校運(yùn)動會中表現(xiàn)突出的同學(xué),總費(fèi)用不超過200元.請問至少要買多少支鋼筆?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店購進(jìn)某種茶壺、茶杯共200個進(jìn)行銷售,其中茶杯的數(shù)量是茶壺數(shù)量的5倍還多20個.銷售方式有兩種:(1)單個銷售;(2)成套銷售.相關(guān)信息如下表:

          進(jìn)價(元/

          單個售價(元/

          成套售價(元/套)

          茶壺

          24

          a

          55

          茶杯

          4

          a﹣30

          備注:(1)一個茶壺和和四個茶杯配成一套(如圖);

          (2)利潤=(售價﹣進(jìn)價)×數(shù)量

          (1)該商店購進(jìn)茶壺和茶杯各有多少個?

          (2)已知甲顧客花180元購買的茶壺數(shù)量與乙顧客花30元購買的茶杯數(shù)量相同.

          ①求表中a的值.

          ②當(dāng)該商店還剩下20個茶壺和100個茶杯時,商店將這些茶壺和茶杯中的一部分按成套銷售,其余按單個銷售,這120個茶壺和茶杯全部售出后所得的利潤為365元.問成套銷售了多少套?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長線上一點(diǎn),∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
          (1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;
          (2)求證:AG2=AFAB;
          (3)若⊙O的直徑為10,AC=2 ,AB=4 ,求△AFG的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動點(diǎn),則PC+PQ的最小值是( )

          A.
          B.4
          C.
          D.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在開展“美麗廣西,清潔鄉(xiāng)村”的活動中某鄉(xiāng)鎮(zhèn)計劃購買A、B兩種樹苗共100棵,已知A種樹苗每棵30元,B種樹苗每棵90元.
          (1)設(shè)購買A種樹苗x棵,購買A、B兩種樹苗的總費(fèi)用為y元,請你寫出y與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
          (2)如果購買A、B兩種樹苗的總費(fèi)用不超過7560元,且B種樹苗的棵數(shù)不少于A種樹苗棵數(shù)的3倍,那么有哪幾種購買樹苗的方案?
          (3)從節(jié)約開支的角度考慮,你認(rèn)為采用哪種方案更合算?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)九年級數(shù)學(xué)興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米)
          (參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

          查看答案和解析>>

          同步練習(xí)冊答案