日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經過圓心O并與圓相交于點E,連接AD.

          (1)求證:AD平分∠BAC;
          (2)若AC=8,tan∠DAC= ,求⊙O的半徑.

          【答案】
          (1)證明:連接OD,

          ∵BC是⊙O的切線,

          ∴OD⊥BC,
          ∠ODB=∠C=90°

          ∴OD∥AC,

          ∴∠ODA=∠CAD,

          ∵OA=OD,

          ∴∠ODA=∠OAD,

          ∴∠OAD=∠CAD,即AD平分∠BAC


          (2)解:連接DE,

          ∵AE是⊙O的直徑,

          ∴∠ADE=90°,

          ∵∠OAD=∠CAD,tan∠DAC= ,

          ∴tan∠EAD=

          ∵tan∠DAC= ,AC=8,

          ∴CD=6,

          由勾股定理得,AD= =10,

          =

          解得,DE= ,

          ∴AE= =

          ∴⊙O的半徑為


          【解析】(1)已知圓的切線,常添加的輔助線是“連半徑,得垂直”。已知BC是⊙0的切線,所以連半徑OD,得到OD⊥BC,再由平行線的性質和等腰三角形的性質就可證得結論;(2)要求此圓的半徑,轉化為求直徑AE的長,已知圓的直徑,常添加的輔助線是“連接一條弦,得直徑所對的圓周角是直角”,方法一:連接DE,得到Rt△ADE,再根據正切的定義和勾股定理可得到圓的半徑,方法二求出AD的長后,也可以證明△ACD△ADE求得AE的長,即可得到此圓的半徑長。
          【考點精析】認真審題,首先需要了解平行線的判定與性質(由角的相等或互補(數量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數量關系)的結論是平行線的性質),還要掌握等腰三角形的性質(等腰三角形的兩個底角相等(簡稱:等邊對等角))的相關知識才是答題的關鍵.

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MDME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,ABCD.∠1=2,∠3=4,試說明 ADBE,請你將下面解答過程填寫完整.

          解:∵ABCD,

          ∴∠4=

          ∵∠3=4

          ∴∠3= (等量代換)

          ∵∠1=2

          ∴∠1+CAF=2+CAE 即∠BAE=

          ∴∠3=

          ADBE ).

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,已知 ADBC,垂足為點 D,EFBC,垂足為點 F,∠1+2=180°, 請?zhí)顚憽?/span>CGD=CAB 的理由.

          解:因為 ADBCEFBC

          所以∠ADC=90°,∠EFD=90°

          得∠ADC=EFD

          所以 AD//EF

          得∠2+3=180°

          又因為∠1+2=180°(已知)

          所以∠1=3

          所以 DG//AB

          所以∠CGD=CAB

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

          (1)如圖2,若四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且∠DCB=∠DAB,則∠DAB=°.

          (2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;

          (3)現有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】下列命題中,真命題是( )

          A. 如果三角形三個角的度數比是3:4:5,那么這個三角形是直角三角形

          B. 如果直角三角形兩直角邊的長分別為ab,那么斜邊的長為a2+b2

          C. 若三角形三邊長的比為1:2:3,則這個三角形是直角三角形

          D. 如果直角三角形兩直角邊分別為ab,斜邊為c,那么斜邊上的高h的長為

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在點C'處,折痕為EF,若∠ABE25°,則∠EFC'的度數為(  )

          A.122.5°B.130°C.135°D.140°

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設運動時間為t s,當t=時,△CPQ與△CBA相似.

          查看答案和解析>>

          同步練習冊答案