日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線C1:y1=tx2﹣1(t>0)和拋物線C2:y2=﹣4(x﹣h)2+1(h≥1).

          (1)兩拋物線的頂點(diǎn)A、B的坐標(biāo)分別為;
          (2)設(shè)拋物線C2的對(duì)稱軸與拋物線C1交于點(diǎn)N,則t為何值時(shí),A、B、M、N為頂點(diǎn)的四邊形是平行四邊形.
          (3)設(shè)拋物線C1與x軸的左交點(diǎn)為點(diǎn)E,拋物線C2與x軸的右邊交點(diǎn)為點(diǎn)F,試問,在第(2)問的前提下,四邊形AEBF能否為矩形?若能,求出h值;若不能,說明理由.

          【答案】
          (1)(0,1);(h,1)
          (2)

          解:∵AM∥BN,

          ∴當(dāng)AM=BN時(shí),A、B、M、N為頂點(diǎn)的四邊形是平行四邊形,

          ∵當(dāng)x=h時(shí),y1=1,y2=tx2﹣1=th2﹣1,

          ∴PN=|1﹣(th2﹣1)\=|2﹣th2|.

          ①當(dāng)點(diǎn)B在點(diǎn)A的下方時(shí),4h2﹣2=th2﹣2,∵h(yuǎn)2≠0,∴t=4;

          ②當(dāng)點(diǎn)B在點(diǎn)A的上方時(shí),4h2﹣2=2﹣th2,整理,得t+4=

          ∵t>0時(shí),t+4>4;當(dāng)h≥1時(shí), ≤4,

          ∴這樣的t值不存在,

          答:當(dāng)點(diǎn)B在點(diǎn)A的下方時(shí),t=4,當(dāng)點(diǎn)B在點(diǎn)A的上方時(shí)不存在


          (3)

          解:由(2)可知,二次項(xiàng)系數(shù)互為相反數(shù),

          ∴兩拋物線的形狀相同,故它們成中心對(duì)稱,

          ∵點(diǎn)A和點(diǎn)B的縱坐標(biāo)的絕對(duì)值相同,

          ∴兩拋物線得對(duì)稱中心落在x軸上.

          ∵四邊形AEBF是平行四邊形,

          ∴當(dāng)∠EAF=90°時(shí),四邊形AFBE是矩形,

          ∵拋物線C1與x軸左交點(diǎn)坐標(biāo)是(﹣ ,0),

          ∴OE=

          ∵拋物線C2與x軸右交點(diǎn)坐標(biāo)是(h+ ,0)且h≥1,

          ∴OF=h+

          ∵∠FAO+∠EAO=90°,∠EAO+AEO=90°,

          ∴∠FAO=∠AEO,

          又∵∠FOA=∠EOA=90°,

          ∴△AEO∽△FAO, =

          ∴OA2=OEOF,即 (h+ )=1,解得h= >1,

          ∴四邊形AEBF能為矩形,且h的值為


          【解析】解:(1)拋物線C1:y1=tx2﹣1的頂點(diǎn)坐標(biāo)是(0,﹣1),
          拋物線C2:y2=﹣4(x﹣h)2+1的頂點(diǎn)坐標(biāo)是(h,1),
          所以答案是:(0,﹣1),(h,1);

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.

          (1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

          (2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

          (1)求(﹣3)5的值;

          (2)若(﹣2)x=6,求x的值;

          (3)若3(2x)=﹣4+x,求x的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】振興中學(xué)某班的學(xué)生對(duì)本校學(xué)生會(huì)倡導(dǎo)的抗震救災(zāi),眾志成城自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形的高度之比為34586,又知此次調(diào)查中捐款25元和30元的學(xué)生一共42.

          (1)他們一共調(diào)查了多少人?

          (2)這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?

          (3)若該校共有1560名學(xué)生,估計(jì)全校學(xué)生捐款多少元.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知△ABC的周長(zhǎng)是20,三邊分別為a,b,c.

          (1)若b是最大邊,求b的取值范圍;

          (2)若△ABC是三邊均不相等的三角形,b是最大邊,c是最小邊,且b=3c,a,b,c均為整數(shù),求△ABC的三邊長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD和正方形CGEF的邊長(zhǎng)分別是3和5,且點(diǎn)B、C、G在同一直線上,M是線段AE的中點(diǎn),連接MF,則MF的長(zhǎng)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過調(diào)查獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題:
          (1)這次活動(dòng)一共調(diào)查了名學(xué)生;
          (2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角的度數(shù);
          (3)若該學(xué)校有1200人,則該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=ACAO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),BOC=130°.

          (1)求證:OB=DC;

          (2)求DCO的大;

          (3)設(shè)AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)A(﹣ ,1).
          (1)試確定此反比例函數(shù)的解析式;
          (2)點(diǎn)O是坐標(biāo)原點(diǎn),將線段OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到線段OB.判斷點(diǎn)B是否在此反比例函數(shù)的圖象上,并說明理由;
          (3)已知點(diǎn)P(m, m+6)也在此反比例函數(shù)的圖象上(其中m<0),過P點(diǎn)作x軸的垂線,交x軸于點(diǎn)M.若線段PM上存在一點(diǎn)Q,使得△OQM的面積是 ,設(shè)Q點(diǎn)的縱坐標(biāo)為n,求n2﹣2 n+9的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案