日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點(diǎn)A恰好落在對(duì)角線BD上的點(diǎn)G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長(zhǎng)為______

          【答案】2.8

          【解析】

          EH⊥BDH,根據(jù)折疊的性質(zhì)得到EG=EA,根據(jù)菱形的性質(zhì)、等邊三角形的判定定理得到△ABD為等邊三角形,得到AB=BD,根據(jù)勾股定理列出方程,解方程即可.

          解:作EH⊥BDH ,

          由折疊的性質(zhì)可知,EG=EA,

          由題意得,BD=DG+BG=8,

          四邊形ABCD是菱形,

          ∴AB=BD,∠ABD=∠CBD=∠ABC=60°

          ∴△ABD為等邊三角形,

          AB=BD=8,

          設(shè)BE=x,則EG=AE=8-x,

          Rt△EHB中,BH=x,EH=x ,

          Rt△EHG中,EG2=EH2+GH2,即(8-x)2=(x)2+(6-x)2,

          解得,x=2.8,即BE=2.8,

          故答案為:2.8.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,自2016年以來,某縣加大了教育經(jīng)費(fèi)的投入.2016年該縣投入教育經(jīng)費(fèi)6000萬元,2018年投入教育經(jīng)費(fèi)8640萬元,假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率相同.

          (1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;

          (2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長(zhǎng)率,請(qǐng)你預(yù)算2019年該縣教育經(jīng)費(fèi)多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】課本中有一道作業(yè)題:

          有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長(zhǎng)是多少mm

          小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.

          1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少mm?請(qǐng)你計(jì)算.

          2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過A,C兩點(diǎn),連接BC.

          (1)求直線l的解析式;

          (2)若直線x=m(m0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)ODAC時(shí),求線段DE的長(zhǎng);

          (3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙O的半徑為5,ABC是⊙O的內(nèi)接三角形,AB=8.AD和過點(diǎn)B的切線互相垂直,垂足為D

          (1)求證:∠BAD+C=90°;

          (2)求線段AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E、F分別在AB、BC上(AEBE),且EOF=90°,OE、DA的延長(zhǎng)線交于點(diǎn)M,OF、AB的延長(zhǎng)線交于點(diǎn)N,連接MN.

          (1)求證:OM=ON.

          (2)若正方形ABCD的邊長(zhǎng)為4,E為OM的中點(diǎn),求MN的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

          (1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

          (2)求ABC的面積(用含a的代數(shù)式表示);

          (3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),直線AC與過B點(diǎn)的切線相交于D,點(diǎn)EBD的中點(diǎn),直線CE交直線AB于點(diǎn)F.

          (1)求證:CF是⊙O的切線;

          (2)ED=3,EF=5,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】位于河南省鄭州市的炎黃二帝巨型塑像,是為代表中華民族之創(chuàng)始、之和諧、之統(tǒng)一.塑像由山體CD和頭像AD兩部分組成.某數(shù)學(xué)興趣小組在塑像前50米處的B處測(cè)得山體D處的仰角為45°,頭像A處的仰角為70.5°,求頭像AD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案