日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀理解并回答問題.觀察下列各式:
          1
          2
          =
          1
          1×2
          =
          1
          1
          -
          1
          2
          ,
          1
          6
          =
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          12
          =
          1
          3×4
          =
          1
          3
          -
          1
          4

          1
          20
          =
          1
          4×5
          =
          1
          4
          -
          1
          5
          ,
          1
          30
          =
          1
          5×6
          =
          1
          5
          -
          1
          6
          ,…①
          (1)請你猜想出表示①中的特點的一般規(guī)律,用含n(n表示整數(shù))的等式表示出來
           

          (2)請利用上速規(guī)律計算:(要求寫出計算過程)
          1
          2
          +
          1
          6
          +
          1
          12
          +…+
          1
          (n-1)n
          +
          1
          n(n+1)
          分析:(1)根據(jù)
          1
          2
          =
          1
          1×2
          =
          1
          1
          -
          1
          2
          ,
          1
          6
          =
          1
          2×3
          =
          1
          2
          -
          1
          3
          1
          12
          =
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          1
          20
          =
          1
          4×5
          =
          1
          4
          -
          1
          5
          ,
          1
          30
          =
          1
          5×6
          =
          1
          5
          -
          1
          6
          ,…則
          1
          n×(n+1)
          =
          1
          n
          -
          1
          n+1
          ,
          (2)將
          1
          2
          +
          1
          6
          +
          1
          12
          +…+
          1
          (n-1)n
          +
          1
          n(n+1)
          變形為
          1
          1
          -
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          …+
          1
          n-1
          -
          1
          n
          +
          1
          n
          -
          1
          n+1
          是解題的關(guān)鍵.
          解答:解:(1)根據(jù)
          1
          2
          =
          1
          1×2
          =
          1
          1
          -
          1
          2
          ,
          1
          6
          =
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          12
          =
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          1
          20
          =
          1
          4×5
          =
          1
          4
          -
          1
          5
          ,
          1
          30
          =
          1
          5×6
          =
          1
          5
          -
          1
          6
          ,
          得出:
          1
          n×(n+1)
          =
          1
          n
          -
          1
          n+1
          ,
          (2)
          1
          2
          +
          1
          6
          +
          1
          12
          +…+
          1
          (n-1)n
          +
          1
          n(n+1)

          =
          1
          1
          -
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          …+
          1
          n-1
          -
          1
          n
          +
          1
          n
          -
          1
          n+1

          =1-
          1
          n+1

          =
          n
          n+1
          點評:本題主要考查了通過觀察,分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題,難度適中.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀理解并回答問題.
          (1)觀察下列各式:
          1
          2
          =
          1
          1×2
          =
          1
          1
          -
          1
          2
          ,
          1
          6
          =
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          12
          =
          1
          3×4
          =
          1
          3
          -
          1
          4
          1
          20
          =
          1
          4×5
          =
          1
          4
          -
          1
          5
          ,
          1
          30
          =
          1
          5×6
          =
          1
          5
          -
          1
          6
          ,…
          請你猜想出表示(1)中的特點的一般規(guī)律,用含x(x表示整數(shù))的等式表示出來
          1
          x(x+1)
          =
           

          (2)請利用上述規(guī)律計算:(要求寫出計算過程)
          1
          2
          +
          1
          6
          +
          1
          12
          +…+
          1
          (n-1)n
          +
          1
          n(n+1)

          (3)請利用上述規(guī)律,解方程
          1
          (x-4)(x-3)
          +
          1
          (x-3)(x-2)
          +
          1
          (x-2)(x-1)
          +
          1
          (x-1)x
          +
          1
          x(x+1)
          =
          1
          x+1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          閱讀理解并回答問題.
          (1)觀察下列各式:
          1
          2
          =
          1
          1×2
          =
          1
          1
          -
          1
          2
          ,
          1
          6
          =
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          12
          =
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,…
          (2)找出規(guī)律,并計算:
          1
          2
          +
          1
          6
          +
          1
          12
          +…+
          1
          (n-1)n
          +
          1
          n(n+1)

          (3)解方程:
          1
          (x-4)(x-3)
          +
          1
          (x-3)(x-2)
          +
          1
          (x-2)(x-1)
          +
          1
          (x-1)x
          +
          1
          x(x+1)
          =
          1
          x+1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          閱讀理解并回答問題.
          (1)觀察下列各式:
          1
          2
          =
          1
          1×2
          =
          1
          1
          -
          1
          2
          ,
          1
          6
          =
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          12
          =
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          1
          20
          =
          1
          4×5
          =
          1
          4
          -
          1
          5
          ,…
          (2)請你猜想出表示(1)中的特點的一般規(guī)律,用含x(x表示整數(shù))的等式表示
          1
          x(x+1)
          =
          1
          x
          -
          1
          x+1
          1
          x
          -
          1
          x+1

          (3)請利用上述規(guī)律,解方程
          1
          (x-4)(x-3)
          +
          1
          (x-3)(x-2)
          +
          1
          (x-2)(x-1)
          +
          1
          (x-1)x
          +
          1
          x(x+1)
          =
          1
          x+1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          閱讀理解并回答問題.
          (1)觀察下列各式:
          數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式,數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式,數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式,數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式,…
          請你猜想出表示(1)中的特點的一般規(guī)律,用含x(x表示整數(shù))的等式表示出來數(shù)學(xué)公式=______.
          (2)請利用上述規(guī)律計算:(要求寫出計算過程)數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式+數(shù)學(xué)公式
          (3)請利用上述規(guī)律,解方程
          數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式=數(shù)學(xué)公式

          查看答案和解析>>

          同步練習(xí)冊答案