日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,在梯形ABCD中,ADBC,A=90°,AD=2,AB=4,BC=5,在射線BC任取一點M,聯(lián)結(jié)DM,作∠MDN=BDC,MDN的另一邊DN交直線BC于點N(點N在點M的左側(cè)).

          (1)當BM的長為10時,求證:BDDM;

          (2)如圖(1),當點N在線段BC上時,設BN=x,BM=y,求y關于x的函數(shù)關系式,并寫出它的定義域;

          (3)如果△DMN是等腰三角形,求BN的長.

          【答案】(1)見解析;(2)y=,0x4;(3)BN=012﹣4.

          【解析】試題分析:

          (1)如圖1,過點DDGBCG,由已知易得四邊形ABGD是矩形,則BG=AD=2,DG=AB=4,BC=5可得CG=3,由勾股定理可得CD=5,結(jié)合BM=10可得CM=BM-BC=5=BC=CD,由此可得△BDM是直角三角形,從而可得BD⊥DM;

          (2)如圖1,由(1)中CD==5=BC可得∠BDC=DBC結(jié)合∠MDN=BDC即可得到∠DBC=MDN,再結(jié)合∠BMD=DMN可得△MDN∽△MBD,從而可得DM2=BM×MN結(jié)合DM2=DG2+MG2=16+(y﹣2)2,MN=BM﹣BN=y﹣x,可得16+(y﹣2)2=y(y﹣x),整理可得y=,結(jié)合點N在線段BC上可得x的取值范圍是:;

          (3)分:Ⅰ、DN=DM;II、DM=MN;III、MN=DN三種情況結(jié)合已知條件和前面所得結(jié)論進行分析計算即可.

          試題解析

          (1)如圖1,過點DDGBCG,

          ∴∠BGD=90°,

          ∵∠A=90°,梯形ABCD中,AD∥BC,

          ∴∠ABC=90°,

          ∴四邊形ABGD是矩形,BG=AD=2,DG=AB=4,

          BC=5,

          CG=BC﹣BG=3,

          RtCDG中,根據(jù)勾股定理得,CD=5,

          BM=10,

          CM=BM﹣BC=5=BC=CD,

          ∴△BDM是直角三角形,

          BDDM;

          (2)由(1)知,CD=5=BC,

          ∴∠BDC=DBC,

          ∵∠MDN=BDC,

          ∴∠DBC=MDN,

          ∵∠BMD=DMN,

          ∴△MDN∽△MBD,

          ,

          DM2=BM×MN

          RtDMG中,根據(jù)勾股定理得,DM2=DG2+MG2=16+(y﹣2)2

          MN=BM﹣BN=y﹣x,

          16+(y﹣2)2=y(y﹣x),

          y=,

          又∵點N在線段BC上,

          0≤x<4;

          (3)∵△DMN是等腰三角形,

          、當DN=DM時,如圖1,NG=MG,

          NG=2﹣x,MG=y﹣2,

          2﹣x=y﹣2,

          x+y=4,

          由(2)知,y=,

          y(4﹣x)=20

          聯(lián)立①②,解得x=﹣﹣4(舍)或x=﹣4,

          即:BN=-4,

          、當DM=MN時,

          ∴∠MDN=DNM,

          ∵∠CBD=MDN,

          ∴∠CBD=DNM,

          ∴點N與點B重合,

          BN=0,

          、當MN=DN,

          ∴∠MDN=DMN,

          ∵∠DBC=MDN,

          ∴∠DBC=DMN,

          DM=BD,

          RtABD中,根據(jù)勾股定理得,BD2=AD2+AB2=20,

          DM2=16+(BM﹣2)2,

          20=16+(BM﹣2)2,

          BM=0(舍去)或BM=4,

          ∴如圖2,

          M在線段BC上,

          同(2)的方法得,16+(BM﹣2)2=BM(BM﹣BN),

          MN=BN+BM,

          聯(lián)立③④解得,BN=1.

          即:BN=01﹣4.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知正方形ABCD的邊長為3,EF分別是ABBC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,點DBC上一動點,連接AD,將ACD沿AD折疊,點C落在點E處,連接DEAB于點F,當DEB是直角三角形時,DF的長為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知在平面直角坐標系xOy中(如圖),已知拋物線y=﹣x2+bx+c經(jīng)過點A(2,2),對稱軸是直線x=1,頂點為B.

          (1)求這條拋物線的表達式和點B的坐標;

          (2)點M在對稱軸上,且位于頂點上方,設它的縱坐標為m,聯(lián)結(jié)AM,用含m的代數(shù)式表示AMB的余切值;

          (3)將該拋物線向上或向下平移,使得新拋物線的頂點C在x軸上.原拋物線上一點P平移后的對應點為點Q,如果OP=OQ,求點Q的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖在△ABC中,AB=AC,點D、E、F分別在邊BC、AB、AC上,且∠ADE=B,ADF=C,線段EF交線段AD于點G.

          (1)求證:AE=AF;

          (2)若,求證:四邊形EBDF是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,AT是經(jīng)過點A的切線,弦CD垂直ABP點,Q為線段CP的中點,連接BQ并延長交切線ATT點,連接OT

          (1)求證:BCOT;

          (2)若⊙O直徑為10,CD=8,求AT的長;

          (3)延長TO交直線CDR,若⊙O直徑為10,CD=8,求TR的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy已知直線AByx+4x軸于點A,y軸于點B.直線CDyx﹣1與直線AB相交于點Mx軸于點C,y軸于點D

          (1)直接寫出點B和點D的坐標;

          (2)若點P是射線MD上的一個動點,設點P的橫坐標是x,△PBM的面積是S,Sx之間的函數(shù)關系

          (3)當S=20,平面直角坐標系內(nèi)是否存在點E,使以點B、E、P、M為頂點的四邊形是平行四邊形?若存在,請直接寫出所有符合條件的點E的坐標;若不存在,說明理由

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】解方程

          12(3x+4)-5(x+1)=4

          2)6-3(x+ )=

          3

          4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關系式圖

          (1)第20天的總用水量為多少米3?

          (2)當x≥20時,求y與x之間的函數(shù)關系式;

          (3)種植時間為多少天時,總用水量達到7000米3?

          查看答案和解析>>

          同步練習冊答案