日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc0)與直線l都經(jīng)過y軸上的同一點,且拋物線L的頂點在直線l上,則稱次拋物線L與直線l具有一帶一路關(guān)系,并且將直線l叫做拋物線L路線,拋物線L叫做直線l帶線”.

          (1)若路線”l的表達式為y=2x﹣4,它的帶線”L的頂點的橫坐標(biāo)為﹣1,帶線”L的表達式;

          (2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有一帶一路關(guān)系,求m,n的值;

          (3)設(shè)(2)中的帶線”L與它的路線”ly軸上的交點為A.已知點P帶線”L上的點,當(dāng)以點P為圓心的圓與路線”l相切于點A時,求出點P的坐標(biāo).

          【答案】(1)帶線”L的表達式為y=2x2+4x4;(2m=2n=2;(3P的坐標(biāo)為(, ).

          【解析】試題分析:

          (1)由“路線l”的表達式為:y=2x-4可得,“路線l”與y軸交于點(0,-4);把x=-1代入y=2x-4可得y=-6,由此可得“帶線L”的頂點坐標(biāo)為(-1,-6),結(jié)合“帶線L”過點(0,-4)即可求得“帶線L”的解析式;

          2)由y=mx2﹣2mx+m﹣1=m(m-1)2-1可得“帶線L”的頂點坐標(biāo)為(1,-1),與y軸交于點0m-1),把這兩個點的坐標(biāo)代入y=nx+1即可求得m、n的值;

          3如圖,由(2)可知,若設(shè)“帶線L”的頂點為B,則點B坐標(biāo)為(11),過點BBCy軸于點C連接PA并延長交x軸于點D,由⊙P路線l相切于點A可得PDl于點A,由此證RtAODRtBCA即可求得點D的坐標(biāo),結(jié)合點A的坐標(biāo)即可求得AD的解析式為y=x+1,由AD的解析式和“帶線L”的解析式組成方程組,解方程組即可求得點P的坐標(biāo).

          試題解析

          ((1帶線”L的頂點橫坐標(biāo)是﹣1,且它的路線l的表達式為y=2x﹣4

          y=2×﹣1﹣4=﹣6

          帶線”L的頂點坐標(biāo)為(﹣1,﹣6).

          設(shè)L的表達式為y=ax+12﹣6,

          路線”y=2x﹣4y軸的交點坐標(biāo)為(0﹣4

          帶線”L也經(jīng)過點(0,﹣4),將(0,﹣4)代入L的表達式,解得a=2

          帶線”L的表達式為 y=2x+12﹣6=2x2+4x﹣4;

          2∵直線y=nx+1y軸的交點坐標(biāo)為(0,1),

          ∴拋物線y=mx2﹣2mx+m﹣1y軸的交點坐標(biāo)也為(0,1),解得m=2

          ∴拋物線表達式為y=2x2﹣4x+1,其頂點坐標(biāo)為(1,﹣1

          直線y=nx+1經(jīng)過點(1,﹣1),解得n=﹣2

          3如圖,設(shè)“帶線L”的頂點為B,則點B坐標(biāo)為(1,﹣1),過點BBCy軸于點C

          ∴∠BCA=90°,

          又∵點A 坐標(biāo)為(01),

          AO=1,BC=1AC=2

          ∵“路線”l是經(jīng)過點A、B的直線

          且⊙P路線l相切于點A,連接PA x軸于點D,

          PAAB

          ∴∠DAB=∠AOD=90°,

          ∴∠ADO+∠DAO=90°

          ∵∠DAO+∠BAC=90°,

          ∴∠ADO=∠BAC,

          RtAODRtBCA,

          OD=AC=2,

          ∴D點坐標(biāo)為(﹣20

          經(jīng)過點D、A的直線表達式為y=x+1,

          ∵點P為直線y=x+1與拋物線Ly=2x24x+1的交點,

          解方程組 (即點A舍去), ,

          ∴點P的坐標(biāo)為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點P關(guān)于OA、OB的對稱點分別為HG,直線HGOA、OB于點C、D,若∠HOG=80°,則∠CPD=___________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 RtABE,連接 ED, EC,延長CE AD F 點,下列結(jié)論:①△ADE≌△BCE;②CEDE;③BD=AF;④SBDE=SACE,其中正確的有(

          A. ①③B. ①②④C. ①②③④D. ②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分8分)某廠制作甲、乙兩種環(huán)保包裝盒。已知同樣用6m的材料制成甲盒的個數(shù)比制成乙盒的個數(shù)少2個,且制成一個甲盒比制作一個乙盒需要多用20%的材料。

          1)求制作每個甲盒、乙盒各用多少材料?

          2)如果制作甲、乙兩種包裝盒3000個,且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請寫出所需材料總長度與甲盒數(shù)量之間的函數(shù)關(guān)系式,并求出最少需要多少米材料。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分10分)

          問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

          問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結(jié)論.

          探究一:

          3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

          此時,顯然能搭成一種等腰三角形。所以,當(dāng)時,

          4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

          只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

          所以,當(dāng)時,

          5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

          若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

          若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

          所以,當(dāng)時,

          6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

          若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

          若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

          所以,當(dāng)時,

          綜上所述,可得表


          3

          4

          5

          6


          1

          0

          1

          1

          探究二:

          7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?

          (仿照上述探究方法,寫出解答過程,并把結(jié)果填在表中)

          分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?

          (只需把結(jié)果填在表中)


          7

          8

          9

          10






          你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,……

          解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

          (設(shè)分別等于、、,其中是整數(shù),把結(jié)果填在表中)











          問題應(yīng)用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)

          其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F(xiàn)BD所在直線上的兩點.若AE= ,EAF=135°,則以下結(jié)論正確的是(

          A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,過點C任作一射線CM,交ABM,分別過A,BAECMBFCM,垂足分別為EF.

          (1)求證:∠ACE=CBF;

          (2)求證:AE=CF;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學(xué)成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合統(tǒng)計圖中的信息,回答下列問題

          1)扇形統(tǒng)計圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計圖補充完整.

          2)此次比賽有四名同學(xué)活動滿分分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】國務(wù)院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:

          1)獲得一等獎的學(xué)生人數(shù);

          2)在本次知識競賽活動中,A,BC,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

          查看答案和解析>>

          同步練習(xí)冊答案