日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀下列解題過程:
          已知a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
          因?yàn)閍2c2-b2c2=a4-b4,①
          所以c2(a2-b2)=(a2-b2)(a2+b2)②.
          所以c2=a2+b2.③
          所以△ABC是直角三角形.
          回答下列問題:
          (。┥鲜鼋忸}過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步代碼為______;
          (ⅱ)錯(cuò)誤的原因?yàn)開_____;
          (ⅲ)請(qǐng)你將正確的解答過程寫下來.
          (ⅰ)③;
          (ⅱ)忽略了a2-b2=0的可能;
          (ⅲ)接第③步:
          ∵c2(a2-b2)=(a2-b2)(a2+b2),
          ∴c2(a2-b2)-(a2-b2)(a2+b2)=0,
          ∴(a2-b2)[c2-(a2+b2)]=0,
          ∴a2-b2=0或c2-(a2+b2)=0.故a=b或c2=a2+b2,
          ∴△ABC是等腰三角形或直角三角形或等腰直角三角形.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          26、請(qǐng)閱讀下列解題過程:已知a、b、c為△ABC的三邊,且滿足a2c2-b+2c2=a4-b4,試判斷△ABC的形狀.
          解:
          ∵a2c2-b2c2=a4-b4,A
          ∴c2(a2-b2)=(a2+b2)(a2-b2),B
          ∴c2=a2+b2,C
          ∴△ABC為直角三角形.D
          問:
          (1)在上述解題過程中,從哪一步開始出現(xiàn)錯(cuò)誤:
          第C步

          (2)錯(cuò)誤的原因是:
          等式兩邊同時(shí)除以a2-b2
          ;
          (3)本題正確的結(jié)論是:
          直角三角形或等腰三角形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          28、閱讀下列解題過程:已知a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判定△ABC的形狀.
          解:∵a2c2-b2c2=a4-b4
          ∴c2(a2-b2)=(a2+b2)(a2-b2)-----------(1)
          ∴c2=a2+b2-----------------(2)
          ∴△ABC是直角三角形--------------(3)
          問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):
          (,2)
          .錯(cuò)誤的原因?yàn)?div id="7eicyst" class="quizPutTag">忽略了a2-b2為0這種情況

          (2)本題正確的結(jié)論是
          直角三角形或等腰三角形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          25、閱讀下列解題過程:
          已知a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
          解:因?yàn)閍2c2-b2c2=a4-b4,①
          所以c2(a2-b2)=(a2-b2)(a2+b2)②.
          所以c2=a2+b2.③
          所以△ABC是直角三角形.
          回答下列問題:
          (。┥鲜鼋忸}過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步代碼為
          ;
          (ⅱ)錯(cuò)誤的原因?yàn)?div id="azd7zcp" class="quizPutTag">忽略了a2-b2=0的可能
          ;
          (ⅲ)請(qǐng)你將正確的解答過程寫下來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀下列解題過程:已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
          解:∵a2c2-b2c2=a4-b4,①
          ∴c2(a2-b2)=(a2+b2)(a2-b2),②
          ∴c2=a2+b2,③
          ∴△ABC為直角三角形.
          問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào)
          ;
          (2)該步正確的寫法應(yīng)是
          當(dāng)a2-b2=0時(shí),a=b;當(dāng)a2-b2≠0時(shí),a2+b2=c2
          當(dāng)a2-b2=0時(shí),a=b;當(dāng)a2-b2≠0時(shí),a2+b2=c2

          (3)本題正確的結(jié)論應(yīng)是
          △ABC為直角三角形或等腰三角形或等腰直角三角形
          △ABC為直角三角形或等腰三角形或等腰直角三角形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀下列解題過程:已知a,b,c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀。
          解:∵ a2c2-b2c2=a4-b4,                     ①
          ∴ c2(a2-b2)=(a2 + b2)(a2-b2),       ②
          ∴ c2= a2+b2,                            ③
          ∴ △ABC為直角三角形。
          問:
          【小題1】上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào)       ;
          【小題2】該步正確的寫法應(yīng)是                   
          【小題3】本題正確的結(jié)論應(yīng)是                     

          查看答案和解析>>

          同步練習(xí)冊(cè)答案