日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 先觀察下列等式,再回答下列問題①
          1 +
          1
          12
          +
          1
          22
          =1+
          1
          1
          -
          1
          2
          =1
          1
          2
          ;②
          1+
          1
          22
          +
          1
          32
          =1+
          1
          2
          -
          1
          3
          =1
          1
          6
          ;③
          1+
          1
          32
          +
          1
          42
          =1+
          1
          3
          -
          1
          4
          =1
          1
          12
          ,請(qǐng)你根據(jù)上面三個(gè)等式提供的信息,猜想
          1 +
          1
          92
          +
          1
          102
          的結(jié)果為
           
          分析:由等式的左邊可以看出,被開方數(shù)都是1加連續(xù)兩個(gè)自然數(shù)平方倒數(shù)和的形式;中間的算式都是1加第一個(gè)自然數(shù)的倒數(shù),再減去第二個(gè)自然數(shù)的倒數(shù);右邊的結(jié)果為1加兩個(gè)自然數(shù)乘積的倒數(shù).
          解答:解:由①
          1 +
          1
          12
          +
          1
          22
          =1+
          1
          1
          -
          1
          2
          =1+
          1
          1×2
          =1
          1
          2
          ;
          1+
          1
          22
          +
          1
          32
          =1+
          1
          2
          -
          1
          3
          =1+
          1
          2×3
          =1
          1
          6

          1+
          1
          32
          +
          1
          42
          =1+
          1
          3
          -
          1
          4
          =1+
          1
          3×4
          =1
          1
          12
          ;
          所以
          1 +
          1
          92
          +
          1
          102
          =1+
          1
          9
          -
          1
          10
          =1+
          1
          9×10
          =1
          1
          90
          點(diǎn)評(píng):解答此類題目要找出每一題中所存在的共性,理清思路與方法,問題容易得證.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          先觀察下列等式,再回答下列問題:
          1+
          1
          12
          +
          1
          22
          =1+
          1
          1
          -
          1
          1+1
          =1
          1
          2
          ;
          1+
          1
          22
          +
          1
          32
          =1+
          1
          2
          -
          1
          2+1
          =1
          1
          6

          1+
          1
          32
          +
          1
          42
          =1+
          1
          3
          -
          1
          3+1
          =1
          1
          12

          (1)請(qǐng)你根據(jù)上面三個(gè)等式提供的信息,猜想
          1+
          1
          42
          +
          1
          52
          的結(jié)果,并驗(yàn)證;
          (2)請(qǐng)你按照上面各等式反映的規(guī)律,試寫出用含n的式子表示的等式(n為正整數(shù)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          先觀察下列等式,再回答問題:
          1+
          1
          12
          +
          1
          22
          =1+
          1
          1
          -
          1
          1+1
          =1
          1
          2

          ②.
          1+
          1
          22
          +
          1
          32
          =1+
          1
          2
          -
          1
          2+1
          =1
          1
          6

          1+
          1
          32
          +
          1
          42
          =1+
          1
          3
          -
          1
          3+1
          =1
          1
          12

          根據(jù)上面三個(gè)等式提供的信息,請(qǐng)猜想
          1+
          1
          42
          +
          1
          52
          的結(jié)果為
           
          ,請(qǐng)按照上各等式反映的規(guī)律,寫出用n(n為正整數(shù))表示的等式
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          先觀察下列等式,再回答問題:
          1+
          1
          12
          +
          1
          22
          =1+
          1
          1
          -
          1
          1+1
          =1
          1
          2
          ;
          1+
          1
          22
          +
          1
          32
          =1+
          1
          2
          -
          1
          2+1
          =1
          1
          6
          ;
          1+
          1
          32
          +
          1
          42
          =1+
          1
          3
          -
          1
          3+1
          =1
          1
          12

          (1)根據(jù)上面三個(gè)等式提供的信息,請(qǐng)猜想
          1+
          1
          42
          +
          1
          52
          的結(jié)果,并進(jìn)行驗(yàn)證;
          (2)根據(jù)上面的規(guī)律,可得
          1+
          1
          92
          +
          1
          102
          =
           

          (3)請(qǐng)按照上面各等式反映的規(guī)律,試寫出用n(n為正整數(shù))表示的等式,并加以驗(yàn)證.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          先觀察下列等式,再回答問題.
          1+
          1
          12
          +
          1
          22
          =1+
          1
          1
          -
          1
          2
          =1+
          1
          1×2
          =1
          1
          2

          1+
          1
          22
          +
          1
          32
          =1+
          1
          2
          -
          1
          3
          =1+
          1
          2×3
          =1
          1
          6

          1+
          1
          32
          +
          1
          42
          =1+
          1
          3
          -
          1
          4
          =1+
          1
          3×4
          =1
          1
          12

          1+
          1
          42
          +
          1
          52
          =1+
          1
          4
          -
          1
          5
          =1+
          1
          4×5
          =1
          1
          20

          (1)根據(jù)上面提供的信息,猜想
          1+
          1
          52
          +
          1
          62
          =
           

          (2)你能根據(jù)各等式反映的觀律,寫出用n(n為正整數(shù))表示上述規(guī)律的等式嗎?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案