日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=3,PB=2,PC=1,求∠BPC的度數(shù).

          分析:根據(jù)已知條件比較分散的特點(diǎn),我們可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連結(jié)PP′,這時(shí)再分別求出∠BP′P和∠AP′P的度數(shù).

          解答:(1)請(qǐng)你根據(jù)以上分析再通過計(jì)算求出圖2中∠BPC的度數(shù);

          (2)如圖3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2,PB=4,PC=2,求∠BPC的度數(shù).

          【答案】(1)135°;(2)120°.

          【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠P′BP=90°,BP′=BP=2 ,P′A=PC=1,BPA=BPC,則△BPP′為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得PP′= ,PB=2,BPP=45°,利用勾股定理的逆定理可得到△APP′為直角三角形,且∠AP′P=90°,則∠BPC=BPA=45°+90°=135°;(2)把△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°,得到了△BP′A,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠P′BP=120°,BP′=BP=4,P′A=PC=2,BPA=BPC,則∠BP′P=BPP=30°,得到P′H=PH,利用含30°的直角三角形三邊的關(guān)系得到BH= BP′=2,P′H= BH=2 ,得到P′P=2P′H=4,再利用勾股定理的逆定理可得到△APP′為直角三角形,且∠AP′P=90°,于是有∠BPC=BPA=30°+90°=120°.

          試題解析:

          1)如圖2

          ∵△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A,

          ∴∠P′BP=90°BP′=BP=2 ,P′A=PC=1∠BP′A=∠BPC,

          ∴△BPP′為等腰直角三角形,

          PP′=

          PB=2,∠BP′P=45°,

          △APP′中,AP=3

          ,PP′=2AP′=1,

          32=22+12

          ∴AP2=PP′2+AP′2,

          ∴△APP′為直角三角形,且∠AP′P=90°

          ∴∠BP′A=45°+90°=135°,

          ∴∠BPC=∠BP′A=135°

          2)如圖3

          六邊形ABCDEF為正六邊形,

          ∴∠ABC=120°

          △BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°,得到了△BP′A

          ∴∠P′BP=120°,BP′=BP=4P′A=PC=2,∠BP′A=∠BPC

          ∴∠BP′P=∠BPP′=30°,

          BBH⊥PP′H,

          ∵BP′=BP

          ∴P′H=PH,

          Rt△BP′H中,∠BP′H=30°,BP′=4,

          BH=BP′=2P′H=BH=2,

          P′P=2P′H=4,

          APP′中,AP=2,PP′=4,AP′=2

          22=42+22,

          ∴AP2=PP′2+AP′2,

          ∴△APP′為直角三角形,且∠AP′P=90°,

          ∴∠BP′A=30°+90°=120°,

          ∴∠BPC=120°

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,E為BC上一點(diǎn),AE⊥DE,∠DAE=30°,若DE=m+n,且m、n滿足m= + +2,試求BE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(x5)(x20)x2mxn,則m____n____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】方程2x﹣4=0的解也是關(guān)于x的方程x2+mx+2=0的一個(gè)解,則m的值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】太陽(yáng)半徑約為696000km,將696000用科學(xué)記數(shù)法表示為( )
          A.696×103
          B.69.6×104
          C.6.96×105
          D.0.696×106

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AO,B三點(diǎn)在同一直線上BODBOC互補(bǔ)

          1)試判斷AOCBOD之間有怎樣的數(shù)量關(guān)系,寫出你的結(jié)論,并加以證明;

          2OM平分AOCON平分AOD,依題意,將備用圖補(bǔ)全;

          MON=40°,BOD的度數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于x的一元二次方程x22x+m10有兩個(gè)實(shí)數(shù)根,則m的取值范圍是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)多邊形的每一個(gè)外角都等于40°,那么這個(gè)多邊形的內(nèi)角和為( 。

          A. 1260° B. 900° C. 1620° D. 360°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列事件為必然事件的是(

          A.打開電視,正在播放新聞B.買一張電影票,座位號(hào)是奇數(shù)號(hào)

          C.任意畫一個(gè)三角形,其內(nèi)角和是180°D.擲一枚質(zhì)地均勻的硬幣,正面朝上

          查看答案和解析>>

          同步練習(xí)冊(cè)答案