【題目】觀察一列數(shù):1、2、4、8、16、32、…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的比值都是同一個(gè)常數(shù),這個(gè)常數(shù)是_______;根據(jù)此規(guī)律,如果(
為正整數(shù))表示這個(gè)數(shù)列的第
項(xiàng),如果
,
,那么
_____,…,
_______;
如果欲求的值,
可令…………①
將①式兩邊同乘以2,得
……………②
由②減去①式,得.
(2)類(lèi)比可得:__________.
(3)用由特殊到一般的方法知:若數(shù)列、
、
、…、
,從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為
,那么
,
____,…,
______ (用含
,
,
的代數(shù)式表示).
用含,
,
的代數(shù)式表示
_________.
(4)一質(zhì)點(diǎn)從距離原點(diǎn)一個(gè)單位的A點(diǎn)向原點(diǎn)方向跳動(dòng),第一次跳到OA中點(diǎn)處,第二次從
跳到
的中點(diǎn)
處,第三次從
跳到
的中點(diǎn)
處,…,如此不斷跳下去,則第50次跳動(dòng)后,該質(zhì)點(diǎn)跳動(dòng)的距離是多少?
【答案】(1) 這個(gè)常數(shù)是2,;
;(2)
;(3)
;
;
;(4)該質(zhì)點(diǎn)跳動(dòng)的距離是
.
【解析】
(1)根據(jù)題意,可得在這個(gè)數(shù)列中,從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是2;有第一個(gè)數(shù)為2,故可得a18,an的值;
(2)根據(jù)題中的提示,可得S的值;
(3)由(2)的方法,依次可以推出a1+a2+a3+…+an的值.
(4)由已知條件求出首項(xiàng)和公比,再代入等比數(shù)列前n項(xiàng)和公式的答案.
(1) 這個(gè)常數(shù)是2,;
(2) 令…………①
將①式兩邊同乘以5,得
……………②
由②減去①式,得.
.
故答案為:
(3);
;
, ①
, ②
由②減去①式,得.
.
(4)
,
.
答:該質(zhì)點(diǎn)跳動(dòng)的距離是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)與探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值嗎?遇到這樣的問(wèn)題,我們可以先思考一下,從簡(jiǎn)單的情形入手.先分別計(jì)算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
……
由此我們可以得到:(x﹣1)(x2019+x2018+x2017+……+x+1)= ;請(qǐng)你利用上面的結(jié)論,完成下面兩題的計(jì)算:
(1)32019+32018+32017+……+3+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“化歸與轉(zhuǎn)化的思想”是指在研究解決數(shù)學(xué)問(wèn)題時(shí)采用某種手段將問(wèn)題通過(guò)變換使之轉(zhuǎn)化,進(jìn)而使問(wèn)題得到解決。
(1)我們知道可以得到
。如果
,求
、
的值.
(2)已知
試問(wèn)多項(xiàng)式a2+b2+c2﹣ab﹣ac﹣bc的值是否與變量
的取值有關(guān)?若有關(guān)請(qǐng)說(shuō)明理由;若無(wú)關(guān)請(qǐng)求出多項(xiàng)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,不添加任何輔助線(xiàn),要使四邊形ABCD是正方形,則需要添加一個(gè)條件是 . (填一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠ADC的平分線(xiàn)交AB于點(diǎn)E,∠ABC的平分線(xiàn)交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=80°,∠2=100°,∠C=∠D.
(1)判斷AC與DF的位置關(guān)系,并說(shuō)明理由;
(2)若∠C比∠A大20°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為拋物線(xiàn)在第二象限內(nèi)一點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn),垂足為點(diǎn)M,與直線(xiàn)AB交于點(diǎn)C,過(guò)點(diǎn)P作x軸的平行線(xiàn)交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)Q作x軸的垂線(xiàn),垂足為點(diǎn)N,若點(diǎn)P在點(diǎn)Q左邊,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求△ACM的面積;
②在①的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),過(guò)直線(xiàn)AC上一點(diǎn)G作y軸的平行線(xiàn)交拋物線(xiàn)一點(diǎn)F,是否存在點(diǎn)F,使得以點(diǎn)P、C、G、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的一條邊
的長(zhǎng)為5,另兩邊
的長(zhǎng)是關(guān)于
的一元二次方程
的兩個(gè)實(shí)數(shù)根.
(1)求證:無(wú)論為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)當(dāng)為何值時(shí),
為直角三角形,并求出
的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸的兩個(gè)交點(diǎn)的坐標(biāo)分別是(-3,0),(2,0),則方程ax2+bx+c=0(a≠0)的解是.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com