日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線最高點D到墻面OB的水平距離為6m時,隧道最高點D距離地面10m.

          (1)求該拋物線的函數(shù)關(guān)系式;

          (2)一輛貨運(yùn)汽車載一長方體集裝箱后寬為4m,高為6m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?

          (3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

          【答案】(1)y=﹣(x﹣6)2+10;(2)這輛貨車能安全通過;(3)4m.

          【解析】

          (1)設(shè)出拋物線的解析式,根據(jù)拋物線頂點坐標(biāo),代入解析式;
          (2)由于拋物線的對稱軸為直線x=6,而隧道內(nèi)設(shè)雙向行車道,車寬為4m,則貨運(yùn)汽車最外側(cè)與地面OA的交點為(2,0)或(10,0),然后計算自變量為210的函數(shù)值,再把函數(shù)值與6進(jìn)行大小比較即可判斷;
          (3)拋物線開口向下,函數(shù)值越大,對稱點之間的距離越小,于是計算函數(shù)值為8所對應(yīng)的自變量的值即可得到兩排燈的水平距離最小值.

          解:(1)根據(jù)題意,該拋物線的頂點坐標(biāo)為(6,10),C(0,4),

          設(shè)拋物線解析式為:y=a(x﹣6)2+10,

          將點C(0,4)代入,得:36a+10=4,

          解得:a=﹣,

          故該拋物線解析式為:y=﹣(x﹣6)2+10;

          (2)由題意得貨運(yùn)汽車最外側(cè)與地面OA的交點為(2,0)或(10,0),

          當(dāng)x=2x=10時,y=>6,

          所以這輛貨車能安全通過;

          (3)令y=8,則﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,

          x1﹣x2=4

          所以兩排燈的水平距離最小是4m.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:拋物線y=-+bx+c經(jīng)過A(-1,0)、B(5,0)兩點,頂點為P.

          求:(1)求b,c的值;

          (2)求△ABP的面積;

          (3)若點C(,)和點D()在該拋物線上,則當(dāng)時,請寫出的大小關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(感知)如圖,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).

          (探究)如圖,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC.

          (1)求證:△DAP~△PBC.

          (2)PD=5,PC=10,BC=9,求AP的長.

          (應(yīng)用)如圖,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與點A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點E.當(dāng)CE=3EB時,求AP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】列方程解應(yīng)用題:

          某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示.

          (1)確定二次函數(shù)的解析式;

          (2)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A、B兩點(點A在點B的右側(cè)),點P是拋物線上的一動點,從點C沿拋物線向點A運(yùn)動(點PA不重合),過點PPDy軸,交AC于點 D.

          (1)求該拋物線的函數(shù)關(guān)系式及A、B兩點的坐標(biāo);

          (2)求點P在運(yùn)動的過程中,線段PD的最大值;

          (3)若點P與點Q重合,點Ex軸上,點F在拋物線上,問是否存在以A,P,E,F(xiàn)為頂點的平行四邊形?若存在,直接寫出點F的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          已知:把RtABC和RtDEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.ACB = EDF = 90°,DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm

          如圖(2),DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CBABC勻速,在DEF移的同時,點P從ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移.當(dāng)DEF的頂點D移動到AC邊上時,DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)動時間為t(s)(0<t<4.5).

          解答下列問題:

          (1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?

          (2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.

          (3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,EBC中點,FAB上一點,GAD上一點,且BF=2,FEG=60°,EGAC于點H,下列結(jié)論①△BEF∽△CHE;AG=1;EH=;SBEF=3SAGH;正確的是______.(填序號即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正六邊形ABCDEF的邊長是6+4,點O1,O2分別是ABF,CDE的內(nèi)心,則O1O2=_____

          查看答案和解析>>

          同步練習(xí)冊答案