日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x﹣交x軸于點(diǎn)A,交y軸于點(diǎn)C,直線y=x﹣5交x軸于點(diǎn)B,在平面內(nèi)有一點(diǎn)E,其坐標(biāo)為(4,),連接CB,點(diǎn)K是線段CB的中點(diǎn),另有兩點(diǎn)M,N,其坐標(biāo)分別為(a,0),(a+1,0).將K點(diǎn)先向左平移 個(gè)單位,再向上平移個(gè)單位得K′,當(dāng)以K′,E,M,N四點(diǎn)為頂點(diǎn)的四邊形周長最短時(shí),a的值為_____

          【答案】

          【解析】

          由解析式求出A、B、C點(diǎn)坐標(biāo),進(jìn)而求得K的坐標(biāo),關(guān)鍵平移的規(guī)律求得K′的坐標(biāo),將K′向右平移1個(gè)單位得到H,作H關(guān)于x軸的對稱點(diǎn)H′,連接EH′交x軸于N,此時(shí)四邊形K′MNE的周長最。蟪鲋本EH′的解析式即可解決問題.

          直線y=﹣x﹣交x軸于點(diǎn)A,交y軸于點(diǎn)C,直線y=x﹣5交x軸于點(diǎn)B,

          ∴A(﹣1,0),

          ∴B(3,0),C(0,﹣),

          K是BC中點(diǎn),

          ∴k(,﹣),

          將K點(diǎn)先向左平移個(gè)單位,再向上平移個(gè)單位得K′,

          ∴K′(1,),

          如圖,將K′向右平移1個(gè)單位得到H,作H關(guān)于x軸的對稱點(diǎn)H′,連接EH′交x軸于N,此時(shí)四邊形K′MNE的周長最。

          ∵H(2,),H′(2,﹣),

          直線EH′的解析式為y=x﹣

          令y=0,得到x=,

          ∴N(,0),

          ∴a=﹣1=.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC.

          (1)如果∠AOB=900BOC=400,求∠DOE的度數(shù);

          (2)如果∠AOB=α,BOC=β α、β均為銳角,α>β,其他條件不變,求∠DOE

          (3)(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)布袋中裝有只有顏色不同的a(a>12)個(gè)球,分別是2個(gè)白球,4個(gè)黑球,6個(gè)紅球和b個(gè)黃球,從中任意摸出一個(gè)球,把摸出白球,黑球,紅球的概率繪制成統(tǒng)計(jì)圖(未繪制完整).請補(bǔ)全該統(tǒng)計(jì)圖并求出 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個(gè)動點(diǎn)(含端點(diǎn)B,不含端點(diǎn)C),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D移動的過程中,BE的取值范圍是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,圓規(guī)兩腳形成的角α稱為圓規(guī)的張角.一個(gè)圓規(guī)兩腳均為12cm,最大張角150°,你能否畫出一個(gè)半徑為20cm的圓?請借助圖2說明理由.(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

          (1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°得到△A1B1C1 . 請你寫出點(diǎn)A1 , B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
          (2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=2 x2+bx+c上,請你求出符合條件的拋物線解析式;
          (3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo),請你直接寫出點(diǎn)P的所有坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算下列各題
          (1)計(jì)算: +( -1)+( 0
          (2)化簡:(1+a)(1﹣a)+a(a﹣3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明一家利用國慶八天駕車到某景點(diǎn)旅游,小汽車出發(fā)前油箱有油35L,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時(shí)間t(h)之間的關(guān)系如圖所示,根據(jù)圖像回答下列問題:

          (1)小汽車行駛______h后加油,中途加油_______L

          (2)求加油前油箱余油量Q與行駛時(shí)間t的函數(shù)關(guān)系式

          (3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點(diǎn)200km,車速80km/h,要到達(dá)目的地,油箱中的油是否夠用?請說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,過原點(diǎn)O及點(diǎn)A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒 個(gè)單位長度的速度沿射線OD方向移動;同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿x軸正方向移動.設(shè)移動時(shí)間為t秒.

          (1)當(dāng)點(diǎn)P移動到點(diǎn)D時(shí),求出此時(shí)t的值;
          (2)當(dāng)t為何值時(shí),△PQB為直角三角形;
          (3)已知過O、P、Q三點(diǎn)的拋物線解析式為y=﹣ (x﹣t)2+t(t>0).問是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案