日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)是常數(shù))
          (1)若該函數(shù)的圖像與軸只有一個交點,求的值;
          (2)若點在某反比例函數(shù)的圖像上,要使該反比例函數(shù)和二次函數(shù)都是的增大而增大,求應(yīng)滿足的條件以及的取值范圍;
          (3)設(shè)拋物線軸交于兩點,且,,在軸上,是否存在點P,使△ABP是直角三角形?若存在,求出點P及△ABP的面積;若不存在,請說明理由。

          解:(1)①當(dāng)時,函數(shù)為為一次函數(shù),它的圖像與x軸只有一個交點。
          ②當(dāng)時,若函數(shù)的圖像與x軸只有一個交點,則方程有兩個相等的實數(shù)根,所以,解得。
          綜上所述,若函數(shù)的圖像與x軸只有一個交點,則的值為0或。
          (2)設(shè)反比例函數(shù)為,
          ∵點在反比例函數(shù)的圖像上,∴,即.。
          ∴反比例函數(shù)為。
          ∵要使該反比例函數(shù)y隨著x的增大而增大,則。
          ∵二次函數(shù)的對稱軸為,
          ∴要使二次函數(shù)的y隨著x的增大而增大,在的情況下,x必須在對稱軸的左邊,即。
          綜上所述,要使該反比例函數(shù)和二次函數(shù)都y隨著x的增大而增大,必須。
          (3)存在。
          ∵拋物線與x軸有兩個交點,
          ∴一元二次方程方程的判別式,解得
          又∵,∴,解得。
          又∵,∴。
          ∴二次函數(shù)為
          設(shè)P(0,p)是滿足條件的點,則,即。
          !。∴。
          !。
          。
          ∴在y軸上,存在點P(0,)或(0,),使△ABP是直角三角形,△ABP的面積為。

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          矩形紙片ABCD中,AB=5,AD=4.
          (1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個正方形.你能否在該矩形中裁剪出一個面積最大的正方形,最大面積是多少?說明理由;

          (2)請用矩形紙片ABCD剪拼成一個面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點都在網(wǎng)格的格點上).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,正方形AOCB在平面直角坐標(biāo)系中,點O為原點,點B在反比例函數(shù))圖象上,△BOC的面積為

          (1)求反比例函數(shù)的關(guān)系式;
          (2)若動點E從A開始沿AB向B以每秒1個單位的速度運動,同時動點F 從B開始沿BC向C以每秒個單位的速度運動,當(dāng)其中一個動點到達(dá)端點時,另一個動點隨之停止運動.若運動時間用t表示,△BEF的面積用表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運動時間t取何值時,△BEF的面積最大?
          (3)當(dāng)運動時間為秒時,在坐標(biāo)軸上是否存在點P,使△PEF的周長最?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.

          (1)求直線CD的解析式;
          (2)求拋物線的解析式;
          (3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
          (4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標(biāo)為(0,6),將△BCD沿BD折疊(D點在OC邊上),使C點落在DA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.

          (1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
          (2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線經(jīng)過B,H, D三點,求拋物線解析式;
          (3)點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B, D點),過點P作PN⊥BC,分別交BC 和 BD于點N, M,是否存在這樣的點P,使如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線y1=ax2+bx+c(a≠0)的頂點坐標(biāo)是(1,4),它與直線y2=x+1的一個交點的橫坐標(biāo)為2.

          (1)求拋物線的解析式;
          (2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
          (3)設(shè)拋物線與x軸的右邊交點為A,過點A作x軸的垂線,交直線y2=x+1于點B,點P在拋物線上,當(dāng)SPAB≤6時,求點P的橫坐標(biāo)x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知M1(3,2),N1(5,﹣1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應(yīng)點).

          (1)若M(﹣2,5),請直接寫出N點坐標(biāo).
          (2)在(1)問的條件下,點N在拋物線上,求該拋物線對應(yīng)的函數(shù)解析式.
          (3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負(fù)半軸上一動點,線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
          (4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          將矩形OABC置于平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點C的坐標(biāo)為(m,0)(m>0),點D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標(biāo)平面內(nèi),設(shè)點B的對應(yīng)點為點E.

          (1)當(dāng)m=3時,點B的坐標(biāo)為       ,點E的坐標(biāo)為         ;
          (2)隨著m的變化,試探索:點E能否恰好落在x軸上?若能,請求出m的值;若不能,請說明理由.
          (3)如圖,若點E的縱坐標(biāo)為-1,拋物線(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知:△ABC為邊長是的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個單位長度的速度沿EF方向向右勻速運動,當(dāng)點C與點F重合時暫停運動,設(shè)△ABC的運動時間為t秒(t≥0).

          (1)在整個運動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
          (2)如圖2,當(dāng)點A與點D重合時,作∠ABE的角平分線BM交AE于M點,將△ABM繞點A逆時針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點,使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
          (3)如圖3,若四邊形DEFG為邊長為的正方形,△ABC的移動速度為每秒個單位長度,其余條件保持不變.△ABC開始移動的同時,Q點從F點開始,沿折線FG﹣GD以每秒個單位長度開始移動,△ABC停止運動時,Q點也停止運動.設(shè)在運動過程中,DE交折線BA﹣AC于P點,則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案