日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知:C是以AB為直徑的半圓O上一點(diǎn),CH⊥AB于點(diǎn)H,直線AC與過B點(diǎn)的切線相交于點(diǎn)D,E為CH中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交直線AB于點(diǎn)G.

          (1)求證:點(diǎn)F是BD中點(diǎn);

          (2)求證:CG是⊙O的切線;

          (3)若FB=FE=2,求⊙O的半徑.

          【答案】(1)見解析;(2)見解析;(3)⊙O半徑為2

          【解析】

          (1)由已知中CHAB于點(diǎn)H,DB為圓的切線,我們易得到AEHAFB,ACE∽△ADF,進(jìn)而根據(jù)三角形相似,對應(yīng)邊成比例,根據(jù)ECH中點(diǎn),得到點(diǎn)FBD中點(diǎn);

          (2)連接CB、OC,根據(jù)圓周定理的推論,我們易得在直角三角形BCDCF=BF,進(jìn)而求出∠OCF=90°,由切線的判定定理,得到CG是⊙O的切線;

          (3)由由FC=FB=FE,易得FA=FG,且AB=BG,由切割線定理及勾股定理,我們可以求出AB的長,即圓的直徑,進(jìn)而得到圓的半徑.

          (1)CHAB,DBAB,

          ∴△AEH∽△AFB,ACE∽△ADF,

          ,

          HE=EC,

          BF=FD,即點(diǎn)FBD中點(diǎn);

          (2)連接CB、OC,

          AB是直徑,

          ∴∠ACB=90°,

          FBD中點(diǎn),

          ∴∠BCF=CBF=90°﹣CBA=CAB=ACO,

          ∴∠OCF=90°,

          又∵OC為圓O半徑,

          CG是⊙O的切線

          (3)FC=FB=FE,

          ∴∠FCE=FEC,

          ∵∠FEC=AEH,

          ∴∠FCE=AEH,

          ∵∠G+FCE=90°,FAB+AEH=90°,

          ∴∠G=FAB,

          FA=FG,

          FBAG,

          AB=BG,

          (2+FG)2=BG×AG=2BG2

          BG2=FG2﹣BF2

          由①、②得:FG2﹣4FG﹣12=0,

          FG1=6,F(xiàn)G2=﹣2(舍去)

          AB=BG=,

          ∴⊙O半徑為2

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個(gè)等級(jí).請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

          1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

          2)求測試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;

          3)若該中學(xué)八年級(jí)共有700名學(xué)生,請你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測試結(jié)果為D等級(jí)的學(xué)生有多少名?

          4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點(diǎn)C為x軸的正半軸上一動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點(diǎn)E.

          (1)試問△OBC與△ABD全等嗎?并證明你的結(jié)論;

          (2)隨著點(diǎn)C位置的變化,點(diǎn)E的位置是否會(huì)發(fā)生變化?若沒有變化,求出點(diǎn)E的坐標(biāo);若有變化,請說明理由;

          (3)如圖2,以O(shè)C為直徑作圓,與直線DE分別交于點(diǎn)F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點(diǎn),且弧CD=DE,連接EB、DO.

          (1)求證:EB∥DO;

          (2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長線于A,求證:直線EA是⊙O的切線;

          (3)若EA=2,AB=1,求⊙O的半徑長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料,解答下列問題.

          如圖1,已知△ABC中,AD 為中線.延長AD至點(diǎn)E,使 DE=AD.在△ADC和△EDB中,AD=DE,∠ADC=EDB,BD=CD,所以,△ACD≌△EBD,進(jìn)一步可得到AC=BE,AC//BE等結(jié)論.

          在已知三角形的中線時(shí),我們經(jīng)常用“倍長中線”的輔助線來構(gòu)造全等三角形,并進(jìn)一步解決一些相關(guān)的計(jì)算或證明題.

          解決問題:如圖2,在△ABC中,AD是三角形的中線,點(diǎn)FAD上一點(diǎn),且BF=AC,連結(jié)并延長BFAC于點(diǎn)E,求證:AE=EF

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)習(xí)小組在討論變化的三角形時(shí),知道大三角形與小三角形是位似圖形(如圖所示),則小三角形上的頂點(diǎn)(a,b)對應(yīng)于大三角形上的頂點(diǎn) ( )

          A. (-2a,-2b) B. (2a,2b) C. (-2b,-2a) D. (-2a,-b)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy內(nèi),函數(shù)y=x的圖象與反比例函數(shù)y=(k≠0)圖象有公共點(diǎn)A,點(diǎn)A的坐標(biāo)為(4,a),AB⊥x軸,垂足為點(diǎn)B.

          (1)求反比例函數(shù)的解析式;

          (2)點(diǎn)C是第一象限內(nèi)直線OA上一點(diǎn),過點(diǎn)C作直線CD∥AB,與反比例函數(shù)y=(k≠0)的圖象交于點(diǎn)D,且點(diǎn)C在點(diǎn)D的上方,CD=AB,求點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCE;AFG=∠AGF;FAG2ACF;BHCH.其中所有正確結(jié)論的序號(hào)是

          A.①②③④B.①②③C.②④D.①③

          查看答案和解析>>

          同步練習(xí)冊答案