日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          某工廠現有甲種原料226kg,乙種原料250kg,計劃利用這兩種原料生產A、B兩種產品共40件,生產A、B兩種產品用料情況如下表:
          需要甲原料 需要乙原料
          一種A種產品 7kg 4kg
          一種B種產品 3kg 10kg
          設生產A產品x件,請解答下列問題:
          (1)求x的值,并說明有哪幾種符合題意的生產方案;
          (2)若甲種原料50元/kg、乙種原料40元/kg,說明(1)中哪種方案較優(yōu)?

          解:(1)設生產A產品x件,則B種產品(40-x)件,
          根據題意,得,
          這個不等式組的解集為25≤x≤26.5.
          又x為整數,所以x=25或26.
          所以符合題意的生產方案有兩種:
          ①生產A種產品25件,B種產品15件;
          ②生產A種產品26件,B種產品14件.

          (2)一件A種產品的材料價錢是:7×50+4×40=510元.
          一件B種產品的材料價錢是:3×50+10×40=550元.
          方案①的總價錢是:25×510+15×550元.
          方案②的總價錢是:26×510+14×550元.
          25×510+15×550-(26×510+14×550)=550-510=40元.
          由此可知:方案②的總價錢比方案①的總價錢少,所以方案②較優(yōu).
          分析:(1)本題中的不等式關系為:生產A產品用的甲原料+生產B產品用的甲原料≤226,生產A產品用的乙原料+生產B產品用的乙原料≤250,由此可得出不等式組,得出自變量的取值范圍,然后根據自變量的取值范圍得出符合條件的自變量的值.
          (2)根據(1)得出的生產方案,然后分別算出生產A、B產品分別要多少錢,進行比較,判斷出最省錢的方案.
          點評:本題考查一元一次不等式組的應用,將現實生活中的事件與數學思想聯系起來,讀懂題意,
          (1)根據“生產A產品用的甲原料+生產B產品用的甲原料≤226,生產A產品用的乙原料+生產B產品用的乙原料≤250”列出不等式組即可求解.
          (2)先計算出生產一件A種產品的材料價錢和一件B種產品的材料價錢,再依據方案①②進行計算即可.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          某工廠現有甲種原料226kg,乙種原料250kg,計劃利用這兩種原料生產A、B兩種產品共40件,生產A、B兩種產品用料情況如下表:
            需要甲原料  需要乙原料 
          一種A種產品   7kg  4kg
          一種B種產品  3kg  10kg
          設生產A產品x件,請解答下列問題:
          (1)求x的值,并說明有哪幾種符合題意的生產方案;
          (2)若甲種原料50元/kg、乙種原料40元/kg,說明(1)中哪種方案較優(yōu)?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          某工廠現有甲種原料226kg,乙種原料250kg,計劃利用這兩種原料生產A、B兩種的產品共40件,生產A、B兩種產品用料情況如下表:
          需要用甲原料 需要用乙原料
          一件A種產品 7kg 4kg
          一件B種產品 3kg 10kg
          若設生產A產品x件,求x的值,并說明有哪幾種符合題意的生產方案.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          某工廠現有甲種原料400千克,乙種原料450千克,計劃利用這兩種原料生產A、B兩種產品共60件.已知生產一件A種產品,需用甲種原料9千克、乙種原料5千克,可獲利潤700元;生產一件B種產品,需用甲種原料4千克、乙種原料10千克,可獲利潤1200元.
          (1)按要求安排A、B兩種產品的生產件數,有哪幾種方案?請你給設計出來;
          (2)按(1)中的哪種生產方案獲總利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品50件.生產一件A產品需要甲種原料9千克,乙種原料3千克,可獲利潤700元;生產一件B產品,需要甲種原料4千克,乙種原料10千克,可獲利潤1200元.
          (1)設生產x件A種產品,寫出其題意x應滿足的不等式組;
          (2)由題意有哪幾種按要求安排A、B兩種產品的生產件數的生產方案?請您幫助設計出來.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件.已知生產一件A產品需要甲種原料9千克,乙種原料3千克,同時可獲利700元,生產一件B產品需要甲種原料4千克,乙種原料10千克,獲利1200元,現設生產x件A產品.
          (1)請用x的式子分別表示生產A、B兩種產品共需要
           
          千克甲種原料,
           
          千克乙種原料?
          (2)根據現有原料,請你設計出安排生產A、B兩種產品件數的生產方案.
          (3)若生產一件A產品可獲利700元,生產一件B產品可獲利1200元,生產兩種產品獲總利潤y元,寫出y與x之間的函數關系
           

          (4)結合(2)(3),算出哪種生產方案獲利最大,最大為
           

          查看答案和解析>>

          同步練習冊答案