日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點E使CE=CA,連接AE。F為AB上一點,且BF=DE,連接FC.

          (1)若DE=1,CF=2,求CD的長。

          (2)如圖2,點G為線段AE的中點,連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.

          【答案】(1)3;(2)見解析.

          【解析】分析:(1)先證明△ADE≌△CBF,可得AE=CF= ,設(shè)CD=x,則CE=AC=x+1 ,在Rt△ACD中根據(jù)勾股定理列方程求解;

          (2)延長BGCD的延長線于點M先證明ABGEMG,從而可得CE+AF= 2CD,由等腰三角形的性質(zhì)和三角形外角的性質(zhì)可求M=∠MCG=∠ACG=∠ABG=15°,從而ACD=30,cos∠ACD=,進而可證明結(jié)論.

          詳解:(1)解:矩形ABCD ,

          AD=BC,∠ADC=∠ABC=90 .

          ∠ADE+∠ADC=180 ,

          ∠ADC=90

          ∴∠ADC=∠ABC .

          ∵BF=DE ,

          △ADE≌△CBF ,

          AE=CF= ,

          在Rt△ABC中,

          AD= ,

          設(shè)CD=x,則CE=AC=x+1 ,

          ,

          解得:

          即: ;

          (2)證明:延長BG交CD的延長線于點M

          易證△ABG≌EMG,

          GM=GB,AB=CD,∠ABG=∠M,

          又BF=ED,

          ∴AF=ME.

          ∴CE+AF=CE+ME=2CD,

          連接CG, 在Rt△MCB,

          CG=MG,

          ∠M=∠MCG.

          又CA=CE,且點G是AE的中點,

          ∠MCG=∠ACG,

          又∠BHC=∠M+∠MCG+∠ACG, ∠BHC+∠ABG=60,

          ∴∠M=∠MCG=∠ACG=∠ABG=15

          ACD=30

          ∵cos∠ACD=,

          ,

          ∴AF+CE=AC.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,∠BAC90°,ABAC,點DBC的中點,直角∠MDN繞點D旋轉(zhuǎn),DM,DN分別與邊ABAC交于E,F兩點,下列結(jié)論:①△DEF是等腰直角三角形;②AECF③△BDE≌△ADF;BECFEF,其中正確結(jié)論是( )

          A. ①②④ B. ②③④

          C. ①②③ D. ①②③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一條弦.則sin∠OBE=

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】小文同學統(tǒng)計了他所在小區(qū)居民每天微信閱讀的時間,并繪制了直方圖.有以下說法:①小文同學一共統(tǒng)計了60人;②每天微信閱讀不足20分鐘的人數(shù)有8人;③每天微信閱讀3040分鐘的人數(shù)最多;④每天微信閱讀010分鐘的人數(shù)最少.根據(jù)圖中信息,上述說法中正確的是(  )

          A. ①②③④ B. ①②③ C. ②③④ D. ③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,平行四邊形ABCD的面積為20,對角線AC,BD相交于點O,點E,F(xiàn)分別是AB,CD上的點,且AE=DF,則圖中陰影部分的面積為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知三角形的兩邊長分別為57,則第三邊的中線長x的取值范圍是( )

          A. B. C. D. 無法確定

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,點A、Dy軸正半軸上,點BC分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-BDO.

          1)求證:AC=BC

          2)如圖2,點C的坐標為(4,0),點EAC上一點,且∠DEA=DBO,求BC+EC的長;

          3)如圖3,過DDFACF點,點HFC上一動點,點GOC上一動點,當HFC上移動、點GOC上移動時,始終滿足∠GDH=GDO+FDH,試判斷FHGH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

          (圖3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于點D,DEABE.若△ADE的周長為8cm,AB_____ cm

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )

          A.3:4
          B. :2
          C. :2
          D.2

          查看答案和解析>>

          同步練習冊答案