日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點(diǎn)O在邊長為8的正方形ABCD的AD邊上運(yùn)動(dòng)(4<C)A<8),以O(shè)為圓心,OA長為半徑作圓,交CD于點(diǎn)E,連接OE、AE,過點(diǎn)E作直線EF交BC于 點(diǎn)F,且CEF=2DAE.

          (1)求證:直線EF為O的切線;

          (2)在點(diǎn)O的運(yùn)動(dòng)過程中,設(shè)DE=x,解決下列問題:

          求OD·CF的最大值,并求此時(shí)半徑的長;

          試猜想并證明CEF的周長為定值.

          【答案】(1)證明見解析;(2)16,5;證明見解析.

          【解析】

          試題分析:(1)由OA=OB得OAE=OEA,則根據(jù)三角形外角性質(zhì)得DOE=2DAE,由于CEF=2DAE,則CEF=DOE,加上DOE+DEO=90°,則CEF+DEO=90°,所以OEF=90°,于是可根據(jù)切線的判定定理得到直線EF為O的切線;

          (2)由于CEF=DOE,根據(jù)三角形相似的判定得到RtDOERtCEF,利用相似比得ODCF=DEEC=x(8-x),配方得ODCF=-(x-4)2+16,然后根據(jù)二次函數(shù)的性質(zhì)得當(dāng)x=4時(shí),ODCF的值最大,最大值為16;設(shè)此時(shí)半徑為R,則OA=OE=R,OD=8-R,在RtODE中,根據(jù)勾股定理可計(jì)算出此時(shí)半徑為5;

          (3)在RtODE中,利用勾股定理得到(8-OE)2+x2=OE2,則OE=4+,OD=8-OE=4-,再利用RtDOERtCEF得到相似比 ,即 ,可計(jì)算得CF=,EF=,然后根據(jù)三角形周長的定義得到CEF的周長得到CE+CF+EF=8-x++,再進(jìn)行分式的化簡運(yùn)算即可得到CEF的周長為16.

          試題解析:(1)證明:OA=OB,

          ∴∠OAE=OEA,

          ∴∠DOE=2DAE,

          ∵∠CEF=2DAE,

          ∴∠CEF=DOE,

          四邊形ABCD為正方形,

          ∴∠D=90°,

          ∴∠DOE+DEO=90°

          ∴∠CEF+DEO=90°,

          ∴∠OEF=90°,

          OEEF,

          直線EF為O的切線;

          (2)解:∵∠CEF=DOE,

          RtDOERtCEF,

          ,

          ODCF=DEEC,

          DE=x,

          EC=8-x,

          ODCF=x(8-x)

          =-x2+8x

          =-(x-4)2+16,

          當(dāng)x=4時(shí),ODCF的值最大,最大值為16,

          設(shè)此時(shí)半徑為R,則OA=OE=R,OD=8-R,

          在RtODE中,

          OD2+DE2=OE2,

          (8-R)2+42=R2,解得R=5,

          即此時(shí)半徑為5;

          (3)猜想CEF的周長為16.

          在RtODE中,OD2+DE2=OE2,即(8-OE)2+x2=OE2,

          OE=4+

          OD=8-OE=4-,

          RtDOERtCEF,

          ,即

          CF=,EF=

          ∴△CEF的周長=CE+CF+EF= CE+CF+EF=8-x++=16.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為( )(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)

          A. 8.1 B. 17.2 C. 19.7 D. 25.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】先化簡下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)數(shù)的絕對值是5,則這個(gè)數(shù)是(
          A.±5
          B.5
          C.﹣5
          D.25

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
          (1)A、B兩種商品的單價(jià)分別是多少元?
          (2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費(fèi)用不超過296元,那么該商店有哪幾種購買方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一商店把某種品牌的褲子按標(biāo)價(jià)的八折出售,仍可獲利20%,若該品牌的褲子每條的進(jìn)價(jià)是180元,則標(biāo)價(jià)是每件______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某幼兒園對全體小朋友愛吃哪種粽子做調(diào)查,以決定最終買哪種口味的粽子.下面的調(diào)查數(shù)據(jù)最值得關(guān)注的是(
          A.方差
          B.平均數(shù)
          C.中位數(shù)
          D.眾數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】請你根據(jù)非負(fù)數(shù)的意義和不等式的解集的意義,寫出下列解集.

          (1)不等式x2>0的解集;

          (2)不等式|x|>0的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于點(diǎn)E,CD平分∠ACB且分別與AB、AE交于點(diǎn)D、F,求∠AFC的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案