日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:在Rt△ABC中,∠ABC=90°,以直角邊AB為直徑作⊙O,⊙O與斜邊AC交于點(diǎn)D,E為BC邊的中點(diǎn),連接DE.
          (1)求證:DE是⊙O的切線;
          (2)連接OE,若四邊形AOED是平行四邊形,求∠CAB的大小.
          分析:(1)D點(diǎn)已經(jīng)在圓周上,要證DE為切線,只需證明∠ODE=90°,而這一結(jié)論可根據(jù)三角形全等來證明,即△OBE≌△ODE,依據(jù)為邊角邊.
          (2)在(1)的基礎(chǔ)上,加上三角形中位線定理,以求出∠CAB=45°.
          解答:精英家教網(wǎng)(1)證明:連接OD;
          ∵AO=BO,BE=CE,
          ∴OE∥AC.
          ∴∠BOE=∠A,∠EOD=∠ODA.
          又∵OD=OA,
          ∴∠A=∠ODA,
          ∴∠EOD=∠EOB.
          又∵OD=OB,OE=OE,
          ∴△DOE≌△BOE,
          ∴∠ODE=∠B=90°.
          即DE是⊙O的切線.

          (2)解:由(1)得,OE∥AC,且OE=
          1
          2
          AC;
          ∵四邊形AOED為平行四邊形,
          ∴OE=AD=CD,
          ∴四邊形OECD為平行四邊形,
          ∴∠C=∠DOE.
          又∵∠A=∠DOE且∠B=90°,
          ∴∠A=∠C=45°.
          點(diǎn)評:此題考查了切線的判定和平行四邊形的判定及性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是邊AB的中點(diǎn),E、G分別是邊AC、BC上的一點(diǎn),∠EMG=45°,AC與MG的延長線相交于點(diǎn)F.
          (1)在不添加字母和線段的情況下寫出圖中一定相似的三角形,并證明其中的一對;
          (2)連接結(jié)EG,當(dāng)AE=3時(shí),求EG的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
          3
          ,解這個(gè)直角三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(diǎn)(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側(cè));點(diǎn)P從D點(diǎn)出發(fā),在射線DQ上運(yùn)動(dòng),連接PA、PC.
          (1)當(dāng)PA=PC時(shí),求出AD的長;
          (2)當(dāng)△PAC構(gòu)成等腰直角三角形時(shí),求出AD、DP的長;
          (3)當(dāng)△PAC構(gòu)成等邊三角形時(shí),求出AD、DP的長;
          (4)在運(yùn)動(dòng)變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時(shí)AD與DP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中點(diǎn),連接BM,CF⊥MB,F(xiàn)是垂足,延長CF交AB于點(diǎn)E.求證:∠AME=∠CMB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
          (1)觀察圖形,猜想BD與⊙O的位置關(guān)系:
          相切
          相切
          ;
          (2)證明第(1)題的猜想.

          查看答案和解析>>

          同步練習(xí)冊答案