日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y=﹣x2+bx+3與x軸交于點A(1,0)和點B,與y軸交于點C.

          (1)求拋物線的解析式.
          (2)直線y=kx+3k經(jīng)過點B,與y軸的負(fù)半軸交于點D,點P為第二象限內(nèi)拋物線上一點,連接PD,射線PD繞點P順時針旋轉(zhuǎn)與線段BD交于點E,且∠EPD=2∠PDC,∠EPD的平分線交線段BD于點H,∠BEP+∠BDP=90°
          ①若四邊形PHDC是平行四邊形,求點P的坐標(biāo);
          ②過點E作EF⊥PD,交PD于點G,交y軸于點F,已知PF=3 ,求直線PF的解析式.

          【答案】
          (1)

          解:把A(1,0)代入y=﹣x2+bx+3中,

          ﹣1+b+3=0,解得:b=﹣2,

          ∴拋物線的解析式為:y=﹣x2﹣2x+3;


          (2)

          解:如圖1,當(dāng)y=0時,﹣x2﹣2x+3=0,

          x2+2x﹣3=0,

          (x+3)(x﹣1)=0,

          x1=﹣3,x2=1,

          ∴B(﹣3,0),

          ∵四邊形PHDC是平行四邊形,

          ∴PH∥DC,

          ∴∠EHP=∠EDC,∠HPD=∠PDC,

          設(shè)∠PDC=x,∠BDP=y,則∠EPH=∠HPD=x,∠EHP=∠EDC=x+y,

          ∴∠BEP=∠BHP+∠EPH=x+y+x=2x+y,

          ∵∠BEP+∠BDP=90°,

          ∴2x+y+y=90°,

          x+y=45°,

          即∠BHP=45°,

          ∴∠BDC=45°,

          ∴△BOD是等腰直角三角形,

          ∴OB=OD=3=﹣3k,

          k=﹣1,

          ∴直線BD的解析式為:y=﹣x﹣3,

          ∵PH⊥x軸,

          設(shè)P(x,﹣x2﹣2x+3),H(x,﹣x﹣3),

          ∴PH=CD=6,

          ∴﹣x2﹣2x+3+x+3=6,

          解得:x1=0(舍),x2=﹣1,

          ∴P(﹣1,4);

          ②如圖2,過D作DQ⊥y軸交PE的延長線于Q,直線PH交DQ于M,PN⊥y軸于N,

          ∵∠PDC= ∠EPD=∠DPH,

          ∴PM∥DN,

          ∵DQ⊥DN,

          而PM平分∠QPD,

          ∴MQ=MD,

          易得四邊形PNDM為矩形,

          ∴MD=PN,

          ∴DQ=2PN,

          ∵EF⊥PD,

          ∴∠BDP+∠DEG=90°,

          而∠BDP+∠BEP=90°,

          ∴∠DEG=∠BEP=∠QED,

          ∵∠BDF=45°,

          ∴∠QDE=45°,

          在△DEQ和△DEF中,

          ∴△DEQ≌△DEF(ASA),

          ∴DQ=DF,

          ∴DF=2MD=2PN,

          設(shè)P(x,﹣x2﹣2x+3),則PN=DM=﹣x,DF=﹣2x,F(xiàn)N=﹣x2﹣2x+3+3+2x=﹣x2+6,

          在Rt△PFN中,由勾股定理得:PF2=PN2+FN2,

          =(﹣x)2+(﹣x2+6)2

          解得:x1= ,x2=±3,

          ∵點P為第二象限內(nèi)拋物線上一點,

          ∴x=﹣ ,

          ∴DF=2

          ∴P(﹣ ,2 ﹣3),F(xiàn)(0,2 ﹣3),

          設(shè)PF解析式為:y=kx+b,

          把P(﹣ ,2 ﹣3),F(xiàn)(0,2 ﹣3)代入得:

          ,

          ,

          ∴直線PF的解析式為:y=﹣2 x+2 ﹣3.


          【解析】(1)把點A的坐標(biāo)代入拋物線的解析式中可得結(jié)論;(2)①如圖1,推出∠BHP=45°,求出直線BD解析式:y=﹣x﹣3,求出P點坐標(biāo)等于(﹣1,4);②如圖2,作輔助線,構(gòu)建矩形和等腰三角形,判斷四邊形PNDM為矩形得到MD=PN,則DQ=2PN,然后證明△DEQ≌△DEF得到DQ=DF,所以DF=2MD=2PN;再在Rt△PFN中利用勾股定理列方程得出P和F的坐標(biāo),根據(jù)待定系數(shù)法求直線PF的解析式.
          【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小),還要掌握等腰三角形的性質(zhì)(等腰三角形的兩個底角相等(簡稱:等邊對等角))的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知某廣場菱形花壇ABCD的周長是24米,∠BAD=60°,則花壇對角線AC的長等于(
          A.6
          B.6米
          C.3
          D.3米

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中, =a,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.

          (1)如圖1,當(dāng)DH=DA時,填空:∠HGA=度;
          (2)如圖1,當(dāng)DH=DA時,若EF∥HG,求∠AHE的度數(shù),并求此時的最小值;
          (3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關(guān)信息如下表;已知該商品的進價為每件30元,設(shè)銷售該商品每天的利潤為y元.
          (1)求出y與x的函數(shù)關(guān)系式
          (2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
          (3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙、丙3人聚會,每人帶了一件禮物,將這3件禮物分別放在3個完全相同的盒子里,每人隨機抽取一個禮盒(裝有禮物的盒子)
          (1)下列事件是必然事件的是 A 乙沒有抽到自己帶來的禮物B 乙恰好抽到自己帶來的禮物C 乙抽到一件禮物D 只有乙抽到自己帶來的禮物
          (2)甲、乙、丙3人抽到的都不是自己帶來的禮物(記為事件A),請列出事件A的所有可能的結(jié)果,并求事件A的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】化簡求值
          (1)計算: ﹣3tan230°+2
          (2)化簡: ÷(1+

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離AB=1.7m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離CD=1.5m,看旗桿頂部M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).請求出旗桿MN的高度.(參考數(shù)據(jù): ≈1.4, ≈1.7,結(jié)果保留整數(shù))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為6,點E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長為( 。

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有(  )

          A.1個
          B.2個
          C.3個
          D.4個

          查看答案和解析>>

          同步練習(xí)冊答案