日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB為⊙O的直徑,過B作⊙O的切線,在該切線上取點(diǎn)C,連接AC交⊙OD,若⊙O的半徑是6,C=36°,則劣弧AD的長是(  )

          A. B. C. D.

          【答案】C

          【解析】

          連接BD,OD,AB為圓O的直徑,利用直徑所對的圓周角為直角得到∠ADB為直角再由BC與圓O相切,利用切線的性質(zhì)得到AB垂直于BC,根據(jù)∠C的度數(shù)求出∠ABD的度數(shù),進(jìn)而確定出∠AOD度數(shù),根據(jù)半徑為6,利用弧長公式即可求出劣弧AD的長

          連接BD,OD

          AB為圓O的直徑,∴∠ADB=90°.

          BC與圓O相切,ABBC,即∠ABC=90°.

          ∵∠C=36°,∴∠ABD=36°.

          OB=OD,∴∠ABD=ODB=36°,∴∠AOD=72°,則劣弧AD的長為=π.

          故選C

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)COB的水平距離為3 m,到地面OA的距離為m.

          (1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

          (2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

          (3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,已知AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把AOP繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使邊AO與AB重合,得到ABD.

          (1)求直線AB的解析式;

          (2)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(,0)時(shí),求此時(shí)DP的長及點(diǎn)D的坐標(biāo);

          (3)是否存在點(diǎn)P,使OPD的面積等于?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠A∶∠B∶∠C=3510,又MNC≌△ABC,則∠BCM∶∠BCN等于(

          A. 12 B. 13 C. 23 D. 14

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在ADE中,∠ADE=90°,點(diǎn)BAE的中點(diǎn),過點(diǎn)DDCAE,DC=AB,連結(jié)BD、CE.

          (1)求證:四邊形BDCE是菱形;

          (2)若AD=8,BD=6,求菱形BDCE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,網(wǎng)格中有格點(diǎn)△ABC與△DEF

          1)△ABC與△DEF是否全等?(不說理由.)

          2)△ABC與△DEF是否成軸對稱?(不說理由.)

          3)若△ABC與△DEF成軸對稱,請畫出它的對稱軸l.并在直線l上畫出點(diǎn)P,使PA+PC最小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知A、B⊙O上兩點(diǎn),△OAB外角的平分線交⊙O于另一點(diǎn)C,CD⊥ABAB的延長線于D.

          (1)求證:CD⊙O的切線;

          (2)E的中點(diǎn),F⊙O上一點(diǎn),EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,D為△ABC的邊AB的延長線上一點(diǎn),過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四邊形ABCD中,∠B=∠D90°,∠C72°,在BC、CD上分別找一點(diǎn)M、N,使AMN的周長最小時(shí),∠AMN+ANM的度數(shù)為_______

          查看答案和解析>>

          同步練習(xí)冊答案