日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在邊長為8的正方形ABCD中,點OAD上一動點(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作圓O的切線交邊BC于點N.

          1)求證:△ODM∽△MCN;

          2)設DM=x,求OA的長(用含x的代數(shù)式表示);

          3)在點O運動的過程中,設△CMN的周長為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

          【答案】1)詳見解析;(2OA =;(3p為定值16.

          【解析】

          1)由切線性質(zhì)可得OMMN,∠NMC=90°-∠OMD=∠DOM,故Rt△DOM∽Rt△CMN;(2OA=y,Rt△ODM中,DM 2=OM 2- DO 2= OA 2- DO2,可得OA=y=;(3)(1)知相似比為,故p=.

          1)證明:∵MN為切線,∴OMMN,

          ∴∠NMC=90°-∠OMD=∠DOM,

          ∴Rt△DOM∽Rt△CMN.

          2)設OA=y,Rt△ODM中,DM 2=OM 2- DO 2= OA 2- DO2,

          x2=y2-(8-y)2,解得OA=y=

          3)由(1)知△DOM ∽△CMN,相似比為,

          p=.

          p為定值16.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,四邊形OABC是矩形,四邊形ADEF是正方形,點ADx軸的正半軸上,點Cy軸的正半軸上,點FAB上,點BE在反比例函數(shù)y(x0)的圖象上,正方形ADEF的面積為9,且BFAF,則k值為(  )

          A. 15 B. C. D. 17

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

          (1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

          (2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

          【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

          【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

          本題解析:

          (1)在Rt△OBA中,∠AOB=30°,OB=3,

          ∴AB=OB·tan 30°=3.

          ∴點A的坐標為(3,3).

          設反比例函數(shù)的解析式為y= (k≠0),

          ∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

          (2)在Rt△OBA中,∠AOB=30°,AB=3,

          sin ∠AOB=,即sin 30°=,

          ∴OA=6.

          由題意得:∠AOC=60°,S扇形AOA′=6π.

          Rt△OCD中,∠DOC=45°,OC=OB=3,

          ∴OD=OC·cos 45°=3×.

          ∴SODCOD2.

          ∴S陰影=S扇形AOA′-SODC=6π.

          點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.

          型】解答
          結(jié)束】
          26

          【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

          (1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

          ① 求證:△OCP∽△PDA;

          ② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

          (2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】國家海洋局將中國釣魚島最高峰命名為高華峰,并對釣魚島進行常態(tài)化立體巡航.如圖1,在一次巡航過程中,巡航飛機飛行高度為2001米,在點A測得高華峰頂F點的俯角為30°,保持方向不變前進1200米到達B點后測得F點俯角為45°,如圖2.請據(jù)此計算釣魚島的最高海拔高度多少米.(結(jié)果保留整數(shù),參考數(shù)值:=1.732=1.414

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,菱形ABCD的邊長為20cm,∠ABC120°.動點P、Q同時從點A出發(fā),其中P4cm/s的速度,沿ABC的路線向點C運動;Q2cm/s的速度,沿AC的路線向點C運動.當PQ到達終點C時,整個運動隨之結(jié)束,設運動時間為t秒.

          1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關系,并說明理由;

          2)若點Q關于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N

          ①當t為何值時,點P、M、N在一直線上?

          ②當點PM、N不在一直線上時,是否存在這樣的t,使得PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點B在線段AC上,點D,EAC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC

          (1)求證:AC=AD+CE;

          (2)AD=3CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;

          (i)當點PAB兩點不重合時,求的值;

          (ii)當點PA點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①2a+b0;abc0;b2﹣4ac0;a+b+c0;(a﹣2b+c)0,其中正確的個數(shù)是( 。

          A. 2 B. 3 C. 4 D. 5

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx﹣3,頂點為E,該拋物線與x軸交于A,B兩點,與y軸交子點C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點D.求∠DBC﹣∠CBE=_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知,

          求拋物線的表達式;

          在拋物線的對稱軸上是否存在點P,使是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

          E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

          查看答案和解析>>

          同步練習冊答案