日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系.
          第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù).自己畫(huà)一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是
          1
          1
          . 再試幾個(gè),我們發(fā)現(xiàn):數(shù)軸上連接兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù).
          第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(
          x1+x2
          2
          x1+x2
          2
          ,
          y1+y2
          2
          y1+y2
          2
           )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以.我們的結(jié)論是:平面直角坐標(biāo)系中連接兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù).
          第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)在平面直角坐標(biāo)系中畫(huà)一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對(duì)角線交點(diǎn)Q的坐標(biāo)可以表示為Q(
          x1+x3
          2
          x1+x3
          2
          y1+y3
          2
          y1+y3
          2
          ),也可以表示為Q(
          x2+x4
          2
          x2+x4
          2
          y2+y4
          2
          y2+y4
          2
           ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是
          x1+x3=x2+x4
          x1+x3=x2+x4
          y1+y3=y2+y4
          y1+y3=y2+y4
          . 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的
          和相等
          和相等
          分析:畫(huà)出數(shù)軸即可求出第一步;先求出N是EF中點(diǎn),求出N的橫坐標(biāo),根據(jù)梯形的中位線性質(zhì)求出縱坐標(biāo)即可;根據(jù)平行四邊形性質(zhì)推出Q是AC和BD的中點(diǎn),根據(jù)以上結(jié)論即可求出答案.
          解答:解:第一步:故答案為:1,如圖:

          解:∵M(jìn)N是梯形AEFB的中位線,AE∥BF,
          ∴E、F的橫坐標(biāo)分別是x1,x2,
          由第一步得出:N和M的橫坐標(biāo)是:
          x1+x2
          2
          ,MN=
          AE+BF
          2
          =
          y1+y2
          2
          ,即是M的縱坐標(biāo),
          故答案為:M(
          x1+x2
          2
          ,
          y1+y2
          2
          )


          解:與第二步解法類似,根據(jù)平行四邊形的性質(zhì)得出QA=QC,QB=QD,推出:(
          x1+x3
          2
          ,
          y1+y3
          2
          )或Q(
          x2+x4
          2
          ,
          y2+y4
          2
          )

          故答案為:(
          x1+x3
          2
          y1+y3
          2
          ),(
          x2+x4
          2
          ,
          y2+y4
          2
          ).
          解:由第三步推出x1+x3=x2+x4    y1+y3=y2+y4,
          故答案為:x1+x3=x2+x4    y1+y3=y2+y4,和相等.
          點(diǎn)評(píng):本題考查了平行四邊形性質(zhì),梯形的中位線性質(zhì),點(diǎn)的坐標(biāo)的應(yīng)用,解此題的關(guān)鍵是得出規(guī)律,能通過(guò)作題培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力,同時(shí)也培養(yǎng)了學(xué)生的理解能力和觀察問(wèn)題的能力,題型較好.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系。

          第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù)

          自己畫(huà)一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是                。 再試幾個(gè),我們發(fā)現(xiàn):

          數(shù)軸上連結(jié)兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù)。

          第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)

          為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(             ,                     )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù)。

                

                    圖①                    圖②

          第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)

          在平面直角坐標(biāo)系中畫(huà)一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),

          D(x4,y4),則其對(duì)角線交點(diǎn)Q的坐標(biāo)可以表示為Q(           ,         ),也可以表示為Q(             ,          ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是                                      。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的              。

           

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系。
          第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù)
          自己畫(huà)一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是                。 再試幾個(gè),我們發(fā)現(xiàn):
          數(shù)軸上連結(jié)兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù)。
          第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)
          為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù)。
              
          圖①                    圖②
          第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)
          在平面直角坐標(biāo)系中畫(huà)一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),
          D(x4,y4),則其對(duì)角線交點(diǎn)Q的坐標(biāo)可以表示為Q(            ,         ),也可以表示為Q(             ,          ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是                                      。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的              。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省呂良中學(xué)八年級(jí)第一學(xué)期第二次階段檢測(cè)數(shù)學(xué)卷.doc 題型:解答題

          讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系。
          第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù)
          自己畫(huà)一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是                。 再試幾個(gè),我們發(fā)現(xiàn):
          數(shù)軸上連結(jié)兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù)。
          第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)
          為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù)。
              
          圖①                    圖②
          第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)
          在平面直角坐標(biāo)系中畫(huà)一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),
          D(x4,y4),則其對(duì)角線交點(diǎn)Q的坐標(biāo)可以表示為Q(            ,         ),也可以表示為Q(             ,          ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是                                      。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的              。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省八年級(jí)第一學(xué)期第二次階段檢測(cè)數(shù)學(xué)卷 題型:選擇題

          讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系。

          第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù)

          自己畫(huà)一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是                 。 再試幾個(gè),我們發(fā)現(xiàn):

          數(shù)軸上連結(jié)兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù)。

          第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)

          為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(                                    )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù)。

                

                    圖①                     圖②

          第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)

          在平面直角坐標(biāo)系中畫(huà)一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),

          D(x4,y4),則其對(duì)角線交點(diǎn)Q的坐標(biāo)可以表示為Q(            ,          ),也可以表示為Q(              ,           ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是                                        。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的              

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案