日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 24、如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個(gè)角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個(gè)角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時(shí),AE、EF、FB中最長(zhǎng)線(xiàn)段是否始終是EF?寫(xiě)出觀察結(jié)果.
          (2)探索:AE、EF、FB這三條線(xiàn)段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.
          分析:(1)在E點(diǎn),F(xiàn)點(diǎn)的位置發(fā)生變化時(shí),AE,EF,F(xiàn)B中最長(zhǎng)線(xiàn)斷始終是EF;
          (2)如圖,△ACE繞C旋轉(zhuǎn)90度到△CBM的位置,連接FM.根據(jù)作法知道△ACE≌△BCM,然后根據(jù)全等三角形的性質(zhì)可以得到CE=CM,∠ACE=∠BCM,∠A=∠CBM=45°,AE=BM,再根據(jù)已知∠ACB=90°,∠ECF=45°,可以證明△ECF≌△MCF,然后利用全等三角形的性質(zhì)就可以證明△BMF是直角三角形,從而證明題目的結(jié)論.
          解答:解:(1)觀察結(jié)果是:當(dāng)45°角的頂點(diǎn)與點(diǎn)C重合,并將這個(gè)角繞著點(diǎn)C在重合,并將這個(gè)角繞著點(diǎn)C在∠ACB內(nèi)部旋轉(zhuǎn)時(shí),AE、EF、FB中最長(zhǎng)線(xiàn)段始終是EF.(3分)
          (2)AE、EF、FB這三條線(xiàn)段能組成以EF為斜邊的直角三角形.(4分)
          證明如下:
          在∠ECF的內(nèi)部作∠ECG=∠ACE,使CG=CA,連接EG、FG(5分)
          又∵CE=CE
          則△ACE≌△GCE(SAS),
          ∴∠1=∠A(8分)
          同理:△CGF≌△CBF,∴∠2=∠B(9分)
          ∵∠ACB=90°
          ∴∠A+∠B=90°
          ∴∠1+∠2=90°(10分)
          ∴∠EGF=90°(11分)
          ∴AE、EF、FB這三條線(xiàn)段能組成以EF為斜邊的直角三角形.(12分)
          點(diǎn)評(píng):此題是開(kāi)放性試題,利用等腰直角三角形的性質(zhì)來(lái)探究圖形變換的規(guī)律,最后利用旋轉(zhuǎn)法證明探究的規(guī)律.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
          (1)寫(xiě)出B,C,D三點(diǎn)的坐標(biāo);
          (2)若拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)B,C,D三點(diǎn),求此拋物線(xiàn)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
          (1)求證:DE為⊙O的切線(xiàn).
          (2)已知DE=3,求:弧BD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線(xiàn)上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線(xiàn)段AD的中點(diǎn),N是線(xiàn)段BE的中點(diǎn),
          求證:△CMN是等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
          (1)求證:△BCE≌△FDC;
          (2)判斷四邊形ABDF是怎樣的四邊形,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過(guò)點(diǎn)E作BC的平行線(xiàn),分別交AB,AC的延長(zhǎng)線(xiàn)于點(diǎn)F,G,聯(lián)結(jié)BE.
          (1)求證:△AEB≌△ADC;
          (2)如果BC=CD,判斷四邊形BCGE的形狀,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案