日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在一塊三角形區(qū)域ABC中,∠C=90°,邊AC=8,BC=6,現(xiàn)要在△ABC內(nèi)建造一個(gè)矩形水池DEFG,如圖的設(shè)計(jì)方案是使DE在AB上.
          (1)求△ABC中AB邊上的高h(yuǎn);
          (2)設(shè)DG=x,當(dāng)x取何值時(shí),水池DEFG的面積最大?
          (3)實(shí)際施工時(shí),發(fā)現(xiàn)在AB上距B點(diǎn)1.85的M處有一棵大樹(shù),問(wèn):這棵大樹(shù)是否位于最大矩形水池的邊上?如果在,為保護(hù)大樹(shù),請(qǐng)?jiān)O(shè)計(jì)出另外的方案,使三角形區(qū)域中欲建的最大矩形水池能避開(kāi)大樹(shù).
          如圖,(1)過(guò)點(diǎn)C作CI⊥AB,交GF于H,在△ABC中用勾股定理得:AB=10,
          ∵S△ABC=
          1
          2
          AC•
          BC=
          1
          2
          AB•CI,
          1
          2
          ×6×8=
          1
          2
          ×10×CI,
          ∴CI=4.8;
          ∴△ABC中AB邊上的高h(yuǎn)=4.8.

          (2)∵水池是矩形,
          ∴GFAB,
          ∴△CGF△CAB,
          ∵CH,CI分別是△CGF和△CAB對(duì)應(yīng)邊上的高,
          CH
          CI
          =
          GF
          AB
          ,
          4.8-x
          4.8
          =
          GF
          10

          ∴GF=10-
          25x
          12
          ,
          ∵10-
          25x
          12
          >0,
          ∴0<x<
          24
          5
          ,
          設(shè)水池的面積為y,則
          y=x(10-
          25x
          12
          )=-
          25
          12
          x2+10x,
          當(dāng)x=-
          10
          2×(
          -25
          12
          )
          =2.4時(shí),水池的面積最大;

          (3)∵FE⊥AB,CI⊥AB,
          ∴FECI,
          ∴△BFE△BCI,
          ∴FE:CI=BE:BI,
          又∵FE=2.4,CI=4.8,
          在Rt△BCI中用勾股定理可得BI=3.6,
          ∴BE=
          FE•BI
          CI
          =
          2.4×3.6
          4.8
          =1.8,
          ∵BE=1.8<1.85,
          ∴這棵大樹(shù)在最大水池的邊上.
          為了保護(hù)這棵大樹(shù),設(shè)計(jì)方案如圖:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知:O為坐標(biāo)原點(diǎn),∠AOB=30°,∠ABO=90°且A(2,0).求:過(guò)A、B、O三點(diǎn)的二次函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
          (1)分別求出圖中直線和拋物線的函數(shù)表達(dá)式;
          (2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,梯形OABC的頂點(diǎn)A、C分別在y軸、x軸的正半軸上,AB⊥OA,二次函數(shù)
          y=mx2-mx+2的圖象經(jīng)過(guò)A、B、C三點(diǎn).
          (1)求點(diǎn)A、B的坐標(biāo);
          (2)當(dāng)AC⊥OB時(shí),求二次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線y=ax2+bx+c經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為F.
          (1)求A,B,C三點(diǎn)的坐標(biāo);
          (2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);
          (3)已知M為拋物線上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:
          ①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
          ②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF與⊙E的位置關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(3,0)為圓心,以5為半徑的圓與x軸相交于點(diǎn)B、C,與y軸相交于點(diǎn)D、E.
          (1)若拋物線y=
          1
          4
          x2+bx+c
          經(jīng)過(guò)C、D兩點(diǎn),求此拋物線的解析式并判斷點(diǎn)B是否在此拋物線上.
          (2)若在(1)中的拋物線的對(duì)稱(chēng)軸有一點(diǎn)P,使得△PBD的周長(zhǎng)最短,求點(diǎn)P的坐標(biāo).
          (3)若點(diǎn)M為(1)中拋物線上一點(diǎn),點(diǎn)N為其對(duì)稱(chēng)軸上一點(diǎn),是否存在以點(diǎn)B、C、M、N為頂點(diǎn)的平行四邊形?若存在,直接寫(xiě)出點(diǎn)M、N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,點(diǎn)A1、A2、A3、…、An在拋物線y=-x2圖象上,點(diǎn)B0、B1、B2、B3、…、Bn在y軸上(點(diǎn)B0與坐標(biāo)原點(diǎn)O重合),若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都為等腰直角三角形,則A2011B2010的長(zhǎng)為( 。
          A.2010B.2011C.2010
          2
          D.2011
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是80元時(shí),銷(xiāo)售量是200件,而銷(xiāo)售單價(jià)每降低1元,就可多售出20件.
          (1)寫(xiě)出銷(xiāo)售量y件與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式;
          (2)寫(xiě)出銷(xiāo)售該品牌童裝獲得的利潤(rùn)w元與銷(xiāo)售單價(jià)x元之間的函數(shù)關(guān)系式;
          (3)若童裝廠規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷(xiāo)售任務(wù),則商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          用12m長(zhǎng)的柵欄圍成一個(gè)中間被隔斷的鴨舍(柵欄占地面積忽略不計(jì)).

          (1)如圖1,當(dāng)AB=______m,BC=______m時(shí),所圍成兩間鴨舍的面積最大,最大值為_(kāi)_____m2;
          (2)如圖2,若現(xiàn)有一面長(zhǎng)4m的墻可以利用,其余三方及隔斷使用柵欄,所圍成兩間鴨舍面積和的最大值是多少______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案