日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 27、情境觀察
          將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
          觀察圖2可知:與BC相等的線段是
          AD
          ,∠CAC′=
          90
          °.

          問題探究
          如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          拓展延伸
          如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.
          分析:①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即可解題;
          ②易證△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,F(xiàn)Q=AG,即可解題;
          ③過點E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.根據(jù)全等三角形的判定和性質(zhì)即可解題.
          解答:解:①觀察圖形即可發(fā)現(xiàn)△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,
          ∴∠CAC′=180°-∠C′AD-∠CAB=90°;
          故答案為:AD,90.

          ②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,
          ∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,
          又∵AF=AC,
          ∴△AFQ≌△CAG,
          ∴FQ=AG,
          同理EP=AG,
          ∴FQ=EP.

          ③HE=HF.
          理由:過點E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.
          ∵四邊形ABME是矩形,
          ∴∠BAE=90°,
          ∴∠BAG+∠EAP=90°.AG⊥BC,
          ∴∠BAG+∠ABG=90°,
          ∴∠ABG=∠EAP.
          ∵∠AGB=∠EPA=90°,
          ∴△ABG∽△EAP,
          ∴AG:EP=AB:EA.
          同理△ACG∽△FAQ,
          ∴AG:FQ=AC:FA.
          ∵AB=k•AE,AC=k•AF,
          ∴AB:EA=AC:FA=k,
          ∴AG:EP=AG:FQ.
          ∴EP=FQ.
          ∵∠EHP=∠FHQ,
          ∴Rt△EPH≌Rt△FQH.
          ∴HE=HF.
          點評:本題考查了全等三角形的證明,考查了全等三角形對應(yīng)邊相等的性質(zhì),考查了三角形內(nèi)角和為180°的性質(zhì),考查了等腰三角形腰長相等的性質(zhì),本題中求證△AFQ≌△CAG是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          情境觀察
          將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
          觀察圖2可知:與BC相等的線段是
          AD或A′D
          AD或A′D
          ,∠CAC′=
          90
          90
          °.

          問題探究
          如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

           

          1.情境觀察 將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是        ,∠CAC′=          °.

          2.問題探究 如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          3.拓展延伸  如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012屆浙江省椒江區(qū)九年級二模數(shù)學(xué)試卷(帶解析) 題型:解答題


          【小題1】情境觀察 將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是        ,∠CAC′=          °.

          【小題2】問題探究 如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          【小題3】拓展延伸 如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB=" k" AE,AC=" k" AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012屆湖南省九年級下學(xué)期第一次月考考試數(shù)學(xué)卷 題型:選擇題

          (本題滿分10分)

          情境觀察

          將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是   ▲   ,∠CAC′=   ▲   °.

           

           

           

           

           

           


          問題探究

          如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分

          別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等

          腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為

          P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

           

          拓展延伸

          如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

           

          查看答案和解析>>

          同步練習(xí)冊答案