日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
          (1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對應(yīng)的函數(shù)關(guān)系式;
          (2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為Q,拋物線的頂點(diǎn)為P,試求經(jīng)過O、P、Q三點(diǎn)的圓的圓心O′的坐標(biāo);
          (3)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C,
          ①當(dāng)BC=1時(shí),求矩形ABCD的周長;
          ②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo);如果不存在,請說明理由.
          (1)將(0,0)代入得m2-1=0,
          ∴m=±1.
          當(dāng)m=1時(shí),y=x2+x=(x+
          1
          2
          2-
          1
          4
          ,
          ∴頂點(diǎn)是(-
          1
          2
          ,-
          1
          4
          ),不合題意,舍去;
          當(dāng)m=-1時(shí),y=x2-3x=(x-
          3
          2
          2-
          9
          4

          ∴頂點(diǎn)是(
          3
          2
          ,-
          9
          4
          )在第四象限,
          ∴所求函數(shù)關(guān)系式為y=x2-3x;

          (2)求得點(diǎn)Q(3,0),而頂點(diǎn)P(
          3
          2
          ,-
          9
          4
          ),
          由題意可知經(jīng)過O、P、Q三點(diǎn)的圓的圓心O′在拋物線的對稱軸上,
          連接O O′,則O O′=P O′,設(shè)拋物線的對稱軸與x軸交于點(diǎn)E,O O′=a,
          在Rt△O EO′中,OE=
          3
          2
          ,O′E=
          9
          4
          -a,
          由勾股定理得(
          3
          2
          2+(
          9
          4
          -a)2=a2
          解得a=
          13
          8
          ,
          ∴O′E=
          9
          4
          -
          13
          8
          =
          5
          8

          ∴點(diǎn)O′(
          3
          2
          ,-
          5
          8
          );

          (3)①當(dāng)BC=1時(shí),則BE=
          1
          2
          ,
          ∴OB=
          3
          2
          -
          1
          2
          =1,
          當(dāng)x=1時(shí),y=-2,
          ∴AB=2,
          ∴矩形ABCD的周長=6;
          ②設(shè)點(diǎn)A(x,y),則OB=x,BE=
          3
          2
          -x,
          ∴BC=2BE=3-2x,
          ∵y=x2-3x,
          ∴AB=3x-x2,
          ∴矩形ABCD的周長=2(3x-x2+3-2x)=-2(x-
          1
          2
          2+6
          1
          2
          ,
          ∴當(dāng)x=
          1
          2
          時(shí),矩形ABCD的周長有最大值為6
          1
          2
          ,此時(shí)A(
          1
          2
          ,-
          5
          4
          ).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=x2+4x+3交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
          (1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);
          (2)在平面直角坐標(biāo)系xoy中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
          (3)連接CA與拋物線的對稱軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在直角坐標(biāo)系中,拋物線y=x2-x-2過A、B、C三點(diǎn),在對稱軸上存在點(diǎn)P,以P、A、C為頂
          點(diǎn)三角形為直角三角形.則點(diǎn)P的坐標(biāo)是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點(diǎn).
          (1)求該拋物線的解析式;
          (2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由.
          (3)P是直線x=1右側(cè)的該拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A、P、M為頂點(diǎn)的三角形與△OAC相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為點(diǎn)C1
          (1)求拋物線的對稱軸及點(diǎn)C、C1的坐標(biāo)(可用含m的代數(shù)式表示);
          (2)如果點(diǎn)Q在拋物線的對稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C、C1、P、Q為頂點(diǎn)的四邊形是平行四邊形,求所有平行四邊形的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
          k
          x
          相交于點(diǎn)A,B.已知點(diǎn)B的坐標(biāo)為(-2,-2),點(diǎn)A在第一象限內(nèi),且tan∠AOx=4.過點(diǎn)A作直線ACx軸,交拋物線于另一點(diǎn)C.
          (1)求雙曲線和拋物線的解析式;
          (2)計(jì)算△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系
          (1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
          (2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計(jì)算說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,要建一個(gè)長方形養(yǎng)雞場,雞場的一邊靠墻,如果用50m長的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場,設(shè)它的長度為xm.
          (1)要使雞場面積最大,雞場的長度應(yīng)為多少m?
          (2)如果中間有n(n是大于1的整數(shù))道籬笆隔墻,要使雞場面積最大,雞場的長應(yīng)為多少m?
          比較(1)(2)的結(jié)果,你能得到什么結(jié)論?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖所示,矩形的窗戶分成上、下兩部分,用9米長的塑鋼制作這個(gè)窗戶的窗框(包括中間檔),設(shè)窗寬x(米),則窗的面積y(平方米)用x表示的函數(shù)關(guān)系式為______;要使制作的窗戶面積最大,那么窗戶的高是______米,窗戶的最大面積是______平方米.

          查看答案和解析>>

          同步練習(xí)冊答案