日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在RtABC中,C=90°,CA=12cm,BC=12cm;動點P從點C開始沿CA以2cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BC以 2cm/s的速度向點C移動.如果P、Q、R分別從C、A、B同時移動,移動時間為t(0<t<6)s.

          (1)CAB的度數(shù)是

          (2)以CB為直徑的O與AB交于點M,當(dāng)t為何值時,PM與O相切?

          (3)寫出PQR的面積S隨動點移動時間t的函數(shù)關(guān)系式,并求S的最小值及相應(yīng)的t值;

          (4)是否存在APQ為等腰三角形?若存在,求出相應(yīng)的t值;若不存在請說明理由.

          【答案】(1)30°;(2)t=3s時,PM與O相切;(3)當(dāng)t=3s時,cm2(4)當(dāng)s時,APQ是等腰三角形.

          【解析】

          試題分析:(1)根據(jù)題意和正切的定義以及特殊角的三角函數(shù)值解答即可;

          (2)連接OP,OM,根據(jù)切線的性質(zhì)得到PMO=90°,證明RtPMORtPCO,OBM是等邊三角形,根據(jù)等邊三角形的性質(zhì)和正切的概念解答;

          (3)過點Q作QEAC于點E,根據(jù)余弦的概念用t表示出QE,根據(jù)三角形的面積公式和二次函數(shù)的性質(zhì)解答;

          (4)分PQ1=AQ1=4t、AP=AQ2=4t、PA=PQ3=4t三種情況,作出輔助線,根據(jù)等腰三角形的性質(zhì)計算即可.

          解:(1)∵∠C=90°,CA=12cm,BC=12cm,

          tanCAB==,

          ∴∠CAB=30°,

          故答案為:30°;

          (2)如圖1,連接OP,OM.

          當(dāng)PM與O相切時,有PMO=PCO=90°,

          MO=CO,PO=PO,

          RtPMORtPCO,

          ∴∠MOP=COP;

          由(1)知OBA=60°

          OM=OB,

          ∴△OBM是等邊三角形,

          ∴∠BOM=60°,

          ∴∠MOP=COP=60°,

          CP=COtanCOP=6tan60°=,

          t=

          t=3,

          即:t=3s時,PM與O相切;

          (3)如圖2,過點Q作QEAC于點E,

          ∵∠BAC=30°,AQ=4t,

          AE=AQcosBAC=4tcos30°=

          ==;

          SPQR=SACB﹣SAQP﹣SQBR﹣SPCR

          =

          =

          =(0<t<6),

          當(dāng)t=3s時,cm2;

          (4)存在.如圖3,分三種情況:

          ①PQ1=AQ1=4t時,過點Q1作Q1DAC于點D,

          ,

          ,

          t=2

          ②當(dāng)AP=AQ2=4t時,

          ,

          =,

          ③當(dāng)PA=PQ3=4t時,

          過點P作PHAB于點H,

          AH=PAcos30°==18﹣3tAQ3=2AH=36﹣6t,

          36﹣6t=4t,

          t=3.6,

          綜上所述,當(dāng)s時,APQ是等腰三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知三角形的兩邊分別為410,則此三角形的第三邊可能是( )

          A. 4 B. 6 C. 8 D. 16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2016貴州省畢節(jié)市第6題)到三角形三個頂點的距離都相等的點是這個三角形的(

          A.三條高的交點 B. 三條角平分線的交點

          C.三條中線的交點 D. 三條邊的垂直平分線的交點

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示.

          (1)若線段AB=4cm,點C在線段AB上(如圖①),點M、N分別是線段AC、BC的中點,求線段MN長.

          (2)若線段AB=acm,點C在線段AB的延長線上(如圖②),點M、N分別是線段AC、BC的中點,你能猜想出MN的長度嗎?請寫出你的結(jié)論,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(2016浙江省舟山市第4題)13世紀數(shù)學(xué)家斐波那契的(計算書)中有這樣一個問題:在羅馬有7位老婦人,每人趕著7頭毛驢,每頭驢馱著7只口袋,每只口袋里裝著7個面包,每個面包附有7把餐刀,每把餐刀有7只刀鞘,則刀鞘數(shù)為(

          A.42 B.49 C.76 D.77

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點P是AOB的邊OB上的一點.

          (1)過點P畫OB的垂線,交OA于點C,

          (2)過點P畫OA的垂線,垂足為H,

          (3)線段PH的長度是點P到 的距離,線段 是點C到直線OB的距離.

          (4)因為直線外一點到直線上各點連接的所有線中,垂線段最短,所以線段PC、PH、OC這三條線段大小關(guān)系是 (用“<”號連接)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】畢達哥拉斯學(xué)派對”數(shù)”與”形”的巧妙結(jié)合作了如下研究:

          名稱及圖形

          幾何點數(shù)

          層數(shù)

          三角形數(shù)

          正方形數(shù)

          五邊形數(shù)

          六邊形數(shù)

          第一層幾何點數(shù)

          1

          1

          1

          1

          第二層幾何點數(shù)

          2

          3

          4

          5

          第三層幾何點數(shù)

          3

          5

          7

          9

          第六層幾何點數(shù)

                

                

                

                

          第n層幾何點數(shù)

                

                

                

                

          請寫出第六層各個圖形的幾何點數(shù),并歸納出第n層各個圖形的幾何點數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知等腰三角形的一個內(nèi)角為70°,則另兩個內(nèi)角的度數(shù)是(  )

          A. 55°,55° B. 70°,40°

          C. 55°,55°或70°,40° D. 以上都不對

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】周六媽媽從新世紀購物回來,5斤蘑菇和1斤牛肉共40元,媽媽嘮叨:“上周也是買同樣多才花了35元,價格上漲太厲害了.”在看書的爸爸:“剛才聽老張說蘑菇單價上漲40%,牛肉單價上漲10%”,在學(xué)習(xí)的小強想應(yīng)該怎樣通過列方程(組)求解今天蘑菇、牛肉的單價呢?請聰明的你幫小強解決這個問題.

          查看答案和解析>>

          同步練習(xí)冊答案