日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知直線yx,點A1的坐標(biāo)為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2的長為半徑畫弧交x軸于點A3,,按此做法進行下去,A6的坐標(biāo)為____________.

          【答案】(32,0).

          【解析】

          試題分析:本題需先求出OA1和OA2的長,再根據(jù)題意得出OAn=2n-1,求出OA6的長等于26-1,即可求出A6的坐標(biāo).

          試題解析:點A1的坐標(biāo)是(1,0)

          OA1=1

          點B1在直線y=x上

          A1B1=

          OB1=2

          OA2=2

          得出OA3=23-1=22=4

          OA6=26-1=25=32

          A6的坐標(biāo)是(32,0).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)題意, 補全解題過程:

          如圖,∠AOB=90°,OE平分∠AOC,OF平分∠BOC 求∠EOF的度數(shù).

          解:因為OE平分∠AOC,OF平分∠BOC

          所以∠EOC =AOC,∠FOC =________.

          所以∠EOF =EOC-________

          =(AOC-_______)

          = ________

          =_________°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】通過學(xué)習(xí)絕對值,我們知道的幾何意義是數(shù)軸上表示數(shù)在數(shù)軸上的對應(yīng)點與原點的距離,如:表示在數(shù)軸上的對應(yīng)點到原點的距離.,表示、在數(shù)軸上對應(yīng)的兩點之間的距離,類似的,,即表示在數(shù)軸上對應(yīng)的兩點之間的距離;一般地,點,在數(shù)軸上分別表示數(shù)、,那么,之間的距離可表示為.

          請根據(jù)絕對值的幾何意義并結(jié)合數(shù)軸解答下列問題:

          1)數(shù)軸上表示的兩點之間的距離是___;數(shù)軸上兩點的距離為,點表示的數(shù)是,則點表示的數(shù)是___.

          2)點,,在數(shù)軸上分別表示數(shù)、,那么到點.的距離之和可表示為_ (用含絕對值的式子表示);若到點.的距離之和有最小值,則的取值范圍是_ __.

          3的最小值為_ __.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】夏師傅是一名徒步運動的愛好者,他用手機軟件記錄了某個月(30天)每天徒步的步數(shù)(單位:萬步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計圖.在這組徒步數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(

          A. 1.2,1.3 B. 1.4,1.3 C. 1.4,1.35 D. 1.3,1.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等腰RtABC中,,點P在以斜邊AB為直徑的半圓上,MPC的中點.當(dāng)點P沿半圓從點A運動至點B時,點M運動的路徑長是(

          A. B. 2 C. D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,P為邊長為2的等邊三角形ABC內(nèi)任意一點,連接PA、PB、PC,過P點分別作BC、AC、AB邊的垂線,垂足分別為DE、F,則PD+PE+PF等于( 。

          A.B.C.2D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,把一個直角三角形ACB(ACB=90°)繞著頂點B順時針旋轉(zhuǎn)60°,使得點C旋轉(zhuǎn)到AB邊上的一點D,點A旋轉(zhuǎn)到點E的位置.F,G分別是BD,BE上的點,BF=BG,延長CF與DG交于點H.

          (1)求證:CF=DG;

          (2)求出FHG的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線軸交于A、B兩點,與y軸交于點C(0,3),且此拋物線的頂點坐標(biāo)為M(-1,4).

          (1)求此拋物線的解析式;

          (2)設(shè)點D為已知拋物線對稱軸上的任意一點,當(dāng)ACD面積等于6時,求點D的坐標(biāo);

          (3)點P在線段AM上,當(dāng)PCy軸垂直時,過點P軸的垂線,垂足為E,將PCE沿直線CB翻折,使點P的對應(yīng)點P'P、E、C處在同一平面內(nèi),請求出P'坐標(biāo),并判斷點P'是否在拋物線上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,若順次連接四邊形ABCD各邊中點得的四邊形EFGH是矩形,則稱原四邊形ABCD為“中母矩形”即若四邊形的對角線互相垂直,那么這個四邊形稱為“中母矩形”.

          1)如圖2,在直角坐標(biāo)系xOy中,已知A40),B14),C4,6),請在格點上標(biāo)出D點的位置(只標(biāo)一點即可),使四邊形ABCD是中母矩形.并寫出點D的坐標(biāo).

          2)如圖3,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDEACFG,連接CE,BG相交于點O,試判斷四邊形BEGC是中母矩形?說明理由.

          3)如圖4,在RtABC中,AB8,BC6,E是斜邊AC的中點,F是直角邊AB的中點,P是直角邊BC上一動點,試探究:當(dāng)PC_____時,四邊形BPEF是中母矩形?(直角三角形中,30°角所對的直角邊是斜邊的一半)

          查看答案和解析>>

          同步練習(xí)冊答案