日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,?ABCD中,AD=3cm,CD=1cm,∠B=45°,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動,速度為3cm/s;點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動,速度為1cm/s,連接并延長QP交BA的延長線于點(diǎn)M,過M作MN⊥BC,垂足是N,設(shè)運(yùn)動時(shí)間為t(s)(0<t<1)
          解答下列問題:
          (1)當(dāng)t為何值時(shí),四邊形AQDM是平行四邊形?
          (2)設(shè)四邊形ANPM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式:
          (3)是否存在某一時(shí)刻t,使四邊形ANPM的面積是平行四邊形ABCD的面積的一半?若存在,求出相應(yīng)的t值;若不存在,說明理由.
          (4)連接AC,是否存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線段AC分成的兩部分?若存在,求出相應(yīng)的t值;若不存在,說明理由.
          【答案】分析:(1)根據(jù)平行四邊形的對角線互相平分得出AP=DP,代入求出即可;
          (2)求出AP和MN的值,根據(jù)三角形的面積公式求出即可;
          (3)假設(shè)存在某一時(shí)刻t,四邊形ANPM的面積是平行四邊形ABCD的面積的一半.根據(jù)(2)中求出的關(guān)系式,列方程求出t的值;
          (4)假設(shè)存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線段AC分成的兩部分,證△APW∽△CNW,得出=,代入求出即可.
          解答:解:(1)∵當(dāng)AP=PD時(shí),四邊形AQDM是平行四邊形,
          即3t=3-3t,
          t=,
          ∴當(dāng)t=s時(shí),四邊形AQDM是平行四邊形.

          (2)∵四邊形ABCD是平行四邊形,
          ∴AB∥CD,
          ∴△AMP∽△DQP,
          =,
          =
          ∴AM=t,
          ∵M(jìn)N⊥BC,
          ∴∠MNB=90°,
          ∵∠B=45°,
          ∴∠BMN=45°=∠B,
          ∴BN=MN,
          ∵BM=1+t,
          在Rt△BMN中,由勾股定理得:BN=MN=(1+t),
          ∵四邊形ABCD是平行四邊形,
          ∴AD∥BC,
          ∵M(jìn)N⊥BC,
          ∴MN⊥AD,
          ∴y=×AP×MN
          =•3t•(1+t)
          即y與t之間的函數(shù)關(guān)系式為y=t2+t(0<t<1).

          (3)假設(shè)存在某一時(shí)刻t,四邊形ANPM的面積是平行四邊形ABCD的面積的一半.
          此時(shí)t2+t=×3×,
          整理得:t2+t-1=0,
          解得t1=,t2=(舍去)
          ∴當(dāng)t=s時(shí),四邊形ANPM的面積是平行四邊形ABCD的面積的一半.

          (4)存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線段AC分成的兩部分,
          理由是:假設(shè)存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線段AC分成的兩部分,
          ∵四邊形ABCD是平行四邊形,
          ∴AD∥BC,
          ∴△APW∽△CNW,
          =,
          ==,
          ∴t=,
          ∵兩數(shù)都在0<t<1范圍內(nèi),即都符合題意,
          ∴當(dāng)t=s或s時(shí),NP與AC的交點(diǎn)把線段AC分成的兩部分.
          點(diǎn)評:本題考查了相似三角形的性質(zhì)和判定,平行四邊形的性質(zhì),解直角三角形,勾股定理的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算的能力,本題綜合性比較強(qiáng),有一定的難度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
          求證:四邊形AMNE是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
          求:BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
          (1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
          (2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案