日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:拋物線y=ax2+bx+c與x軸交于A,B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C精英家教網(wǎng)在y軸的正半軸上;線段OB,OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
          (1)求此拋物線的表達式;
          (2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE.當△CEF的面積最大時,求點E的坐標,并求此時面積的最大值;
          (3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點Q,點D的坐標為(-3,0).問:是否存在這樣的直線l,使得△ODQ是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
          分析:(1)已知了拋物線的對稱軸可以用頂點式二次函數(shù)通式y(tǒng)=a(x-h)2+b來設(shè)拋物線的解析式.然后根據(jù)方程x2-10x+16=0,求出B、C兩點的坐標,進而可根據(jù)B、C的坐標求出拋物線的解析式.
          (2)本題可通過設(shè)E點的坐標,然后列出關(guān)于△CEF的面積和E點橫坐標的二次函數(shù)式,然后根據(jù)函數(shù)的性質(zhì)來確定面積的最大值以及對應的E點的坐標.
          (3)本題的關(guān)鍵是求出Q點的縱坐標,可分三種情況進行討論.
          ①當DO=DQ時,根據(jù)A、D、O的坐標可知AD=OD,那么此時AD=OD=DQ,三角形AQO為直角三角形且與△AOC相似.可根據(jù)相似比求出面積比,進而求出三角形AOQ的面積.過Q作AO邊上的高QM,即可根據(jù)三角形AOQ的面積求出QM的長即Q點的縱坐標.然后代入拋物線的解析式中即可求出P點的坐標.
          ②當DQ=OQ時,可根據(jù)三角形AQM與三角形ACO相似求出QM的長即Q點的縱坐標,然后按①的方法即可得出P點的坐標.
          ③當OQ=OD時,OQ=OD=3,顯然這種情況是不成立的(O到AC的距離為4.8).
          綜合三種情況即可求出符合條件的P點的坐標.
          解答:解:(1)解方程x2-10x+16=0得x1=2,x2=8.
          ∵點B在x軸的正半軸上,點C在y軸的正半軸上,且OB<OC,
          ∴點B的坐標為(2,0),點C的坐標為(0,8).
          又∵拋物線y=ax2+bx+c的對稱軸是直線x=-2,
          ∴可設(shè)拋物線的表達式為y=a(x+2)2+k.
          ∵點B(2,0),C(0,8)在拋物線上,
          解得a=-
          2
          3
          ,k=
          32
          3

          ∴所求拋物線的表達式為y=-
          2
          3
          (x+2)2+
          32
          3
          =-
          2
          3
          x2-
          8
          3
          x+8


          (2)設(shè)點E的坐標為(m,0),過點F作FG⊥x軸(AB),垂足為點G.
          由(1)可得,點A的坐標為(-6,0).
          ∴AB=8,EB=2-m.
          ∵EF∥AC,
          ∴△BEF∽△BAC.精英家教網(wǎng)
          BE
          BA
          =
          FG
          CO

          2-m
          8
          =
          FG
          8
          ,
          ∴FG=2-m,
          ∴S=S△BCE-S△BFE=
          1
          2
          (2-m)
          ×8-
          1
          2
          (2-m)×(2-m)=-
          1
          2
          (m2+4m-12)=-
          1
          2
          (m+2)2+8

          自變量m的取值范圍是-6<m<2,
          ∴當m=-2時,S有最大值,S最大值=8.
          ∴點E的坐標為(-2,0).

          (3)存在.在△ODQ中,
          (Ⅰ)若DO=DQ,
          ∵A(-6,0),D(-3,0),
          ∴AD=OD=DQ=3.
          ∴△AQO是直角三角形.
          ∴Rt△AOQ∽Rt△ACO,
          S△AOQ
          S△SCO
          =(
          AO
          AC
          )2
          ,
          由(1)可知AC=10,S△ACO=24,
          又∵AO=6,
          ∴S△AOQ=
          216
          25

          作QM⊥x軸(OA),垂足為點M.
          則S△AOQ=
          1
          2
          ×6
          ×QM=
          216
          25
          ,
          ∴QM=
          72
          25
          ,
          即點Q的縱坐標為
          72
          25
          ,
          -
          2
          3
          (x+2)2+
          32
          3
          =
          72
          25
          ,
          解得x1=-2-
          8
          3
          5
          ,x2=-2+
          8
          3
          5
          ,
          此時,點P的坐標為:P1-2-
          8
          3
          5
          72
          25
          )或P2-2+
          8
          3
          5
          ,
          72
          25
          ).
          (Ⅱ)若QO=QD,
          則QM是等腰△OQD底邊上的中線.
          ∴OM=
          1
          2
          OD=
          3
          2
          ,
          ∴AM=
          9
          2
          ,
          由于Rt△AMQ∽Rt△AOC,
          AM
          AO
          =
          QM
          CO

          9
          2
          6
          =
          QM
          8
          ,解得QM=6即點Q的縱坐標為6.
          -
          2
          3
          (x+2)2+8=6

          解得x3=-2-
          3
          ,x4=-2+
          3
          ,
          此時點P的坐標為:P3-2-
          3
          ,6)或P4-2+
          3
          ,6).
          (Ⅲ)若OD=OQ,則OQ=3,
          ∵點O到AC的距離是
          6×8
          10
          =4.8
          ,而OQ=3<4.8,此時不存在這樣的直線l,使△ODQ是等腰三角形.
          綜上所述,存在這樣的直線l,使得△ODQ是等腰三角形.點P的坐標為:P1-2-
          8
          3
          5
          ,
          72
          25
          )或P2-2+
          8
          3
          5
          ,
          72
          25
          )或P3-2-
          3
          ,6)或P4-2+
          3
          ,6).
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似、探究等腰三角形的構(gòu)成情況等重要知識點,綜合性強,能力要求較高.考查學生分類討論,數(shù)形結(jié)合的數(shù)學思想方法.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          已知:拋物線y=x2-(a+b)x+
          c2
          4
          ,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個不同交點;
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為
          3
          ,拋物線與x軸交于點P、Q,問是否精英家教網(wǎng)存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
          (1)求證:拋物線與直線一定有兩個不同的交點;
          (2)設(shè)拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
          c
          a
          ,試問:是否存在實數(shù)k,使線段A1B1的長為4
          2
          .如果存在,求出k的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
          (1)頂點P的坐標是
          (-1,4)
          (-1,4)
          ;
          (2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達式;
          (3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          已知:拋物線數(shù)學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個不同交點;
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年四川省綿陽市南山中學自主招生考試數(shù)學試卷(解析版) 題型:解答題

          已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
          (1)求證:拋物線與x軸必有兩個不同交點;
          (2)設(shè)直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
          (3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案